These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 1142420)
1. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: studies on ultrastructure, phase transitions and permeability. Papahadjopoulos D; Vail WJ; Moscarello M J Membr Biol; 1975; 22(2):143-64. PubMed ID: 1142420 [TBL] [Abstract][Full Text] [Related]
2. Effects of proteins on thermotropic phase transitions of phospholipid membranes. Papahadjopoulos D; Moscarello M; Eylar EH; Isac T Biochim Biophys Acta; 1975 Sep; 401(3):317-35. PubMed ID: 52374 [TBL] [Abstract][Full Text] [Related]
3. Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition. Boggs JM; Clement IR; Moscarello MA Biochim Biophys Acta; 1980 Sep; 601(1):134-51. PubMed ID: 7407160 [TBL] [Abstract][Full Text] [Related]
4. Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers. van Zoelen EJ; van Dijck PW; de Kruijff B; Verkleij AJ; van Deenen LL Biochim Biophys Acta; 1978 Dec; 514(1):9-24. PubMed ID: 718907 [TBL] [Abstract][Full Text] [Related]
5. Preparation and properties of vesicles of a purified myelin hydrophobic protein and phospholipid. A spin label study. Boggs JM; Vail WJ; Moscarello MA Biochim Biophys Acta; 1976 Nov; 448(4):517-30. PubMed ID: 184840 [TBL] [Abstract][Full Text] [Related]
6. The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Verkleij AJ; de Kruyff B; Ververgaert PH; Tocanne JF; van Deenen LL Biochim Biophys Acta; 1974 Mar; 339(3):432-7. PubMed ID: 4834678 [No Abstract] [Full Text] [Related]
7. Studies on membrane fusion. I. Interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide. Papahadjopoulos D; Hui S; Vail WJ; Poste G Biochim Biophys Acta; 1976 Oct; 448(2):254-64. PubMed ID: 971433 [TBL] [Abstract][Full Text] [Related]
8. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
9. Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a hydrophobic protein from myelin proteolipid. Boggs JM; Moscarello MA Biochemistry; 1978 Dec; 17(26):5734-9. PubMed ID: 215205 [TBL] [Abstract][Full Text] [Related]
10. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously. Gabriel NE; Roberts MF Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923 [TBL] [Abstract][Full Text] [Related]
11. Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions. Derksen A; Gantz D; Small DM Biophys J; 1996 Jan; 70(1):330-8. PubMed ID: 8770209 [TBL] [Abstract][Full Text] [Related]
12. The effect of cholesterol and epicholesterol on the activity and temperature dependence of the purified, phospholipid-reconstituted (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes. George R; McElhaney RN Biochim Biophys Acta; 1992 Jun; 1107(1):111-8. PubMed ID: 1535512 [TBL] [Abstract][Full Text] [Related]
13. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Wieprecht T; Beyermann M; Seelig J Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132 [TBL] [Abstract][Full Text] [Related]
15. Studies of protein-phospholipid interaction in isolated mitochondrial ubiquinone-cytochrome c reductase. Gwak SH; Yu L; Yu CA Biochim Biophys Acta; 1985 Sep; 809(2):187-98. PubMed ID: 2994720 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides. Surewicz WK; Epand RM Biochim Biophys Acta; 1986 Apr; 856(2):290-300. PubMed ID: 3955044 [TBL] [Abstract][Full Text] [Related]
17. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Jacobson K; Papahadjopoulos D Biochemistry; 1975 Jan; 14(1):152-61. PubMed ID: 234017 [TBL] [Abstract][Full Text] [Related]
18. Cholesterol affects divalent cation-induced fusion and isothermal phase transitions of phospholipid membranes. Shavnin SA; Pedroso de Lima MC; Fedor J; Wood P; Bentz J; Düzgüneş N Biochim Biophys Acta; 1988 Dec; 946(2):405-16. PubMed ID: 3207754 [TBL] [Abstract][Full Text] [Related]
19. Cholesterol does not remove the gel-liquid crystalline phase transition of phosphatidylcholines containing two polyenoic acyl chains. Kariel N; Davidson E; Keough KM Biochim Biophys Acta; 1991 Feb; 1062(1):70-6. PubMed ID: 1998712 [TBL] [Abstract][Full Text] [Related]
20. Interaction of a serum apo-lipoprotein with ordered and fluid lipid bilayers. Correlation between lipid and protein structure. Träuble H; Middelhoff G; Brown VW FEBS Lett; 1974 Dec; 49(2):269-75. PubMed ID: 4442607 [No Abstract] [Full Text] [Related] [Next] [New Search]