BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11425027)

  • 1. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl.
    Lee SE; Lees EM
    J Econ Entomol; 2001 Jun; 94(3):706-13. PubMed ID: 11425027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of an esterase conferring resistance to fenitrothion in Oryzaephilus surinamensis (L.) (insecta, coleoptera, silvanidae).
    Lee SE; Lees EM; Campbell BC
    J Agric Food Chem; 2000 Oct; 48(10):4991-6. PubMed ID: 11052767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variability in esterases and the insecticide resistance in brazilian strains of Oryzaephilus mercator and Oryzaephilus surinamensis (Coleoptera: Silvanidae).
    Silva GA; Lapenta AS
    Bull Entomol Res; 2011 Apr; 101(2):177-85. PubMed ID: 21034518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera: Tenebrionidae).
    Haubruge E; Amichot M; Cuany A; Berge JB; Arnaud L
    Insect Biochem Mol Biol; 2002 Sep; 32(9):1181-90. PubMed ID: 12213253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen).
    Yang ML; Zhang JZ; Zhu KY; Xuan T; Liu XJ; Guo YP; Ma EB
    Arch Insect Biochem Physiol; 2009 May; 71(1):3-15. PubMed ID: 18615705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Esterases are responsible for malathion resistance in
    Prasad KM; Raghavendra K; Verma V; Velamuri PS; Pande V
    J Vector Borne Dis; 2017; 54(3):226-232. PubMed ID: 29097637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism.
    Atterberry TT; Burnett WT; Chambers JE
    Toxicol Appl Pharmacol; 1997 Dec; 147(2):411-8. PubMed ID: 9439736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of biochemical based insecticide resistance mechanism by thermal bioassay and the variation of esterase activity in Culex quinquefasciatus.
    Swain V; Seth RK; Raghavendra K; Mohanty SS
    Parasitol Res; 2009 Jun; 104(6):1307-13. PubMed ID: 19152003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malathion-specific resistance in Anopheles stephensi from Pakistan.
    Scott JG; Georghiou GP
    J Am Mosq Control Assoc; 1986 Mar; 2(1):29-32. PubMed ID: 3507466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan.
    Hemingway J
    Trans R Soc Trop Med Hyg; 1983; 77(4):477-80. PubMed ID: 6636275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-resistance and possible mechanisms of chlorpyrifos resistance in Laodelphax striatellus (Fallén).
    Wang L; Zhang Y; Han Z; Liu Y; Fang J
    Pest Manag Sci; 2010 Oct; 66(10):1096-100. PubMed ID: 20582994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in esterases are associated with malathion resistance in Habrobracon hebetor (Hymenoptera: Braconidae).
    Perez-Mendoza J; Fabrick JA; Zhu KY; Baker JE
    J Econ Entomol; 2000 Feb; 93(1):31-7. PubMed ID: 14658508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between biochemical parameters and susceptibility of freshwater fish to malathion.
    Li Shao-Non ; Fan De-Fang
    J Toxicol Environ Health; 1996 Jul; 48(4):413-8. PubMed ID: 8691510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii.
    Pan Y; Guo H; Gao X
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Mar; 152(3):266-70. PubMed ID: 19110065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of carboxylesterase and cytochrome P450 to the bioactivation and detoxification of isocarbophos and its enantiomers in human liver microsomes.
    Zhuang XM; Wei X; Tan Y; Xiao WB; Yang HY; Xie JW; Lu C; Li H
    Toxicol Sci; 2014 Jul; 140(1):40-8. PubMed ID: 24752505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Larval susceptibility of an insecticide-resistant western corn rootworm (Coleoptera: Chrysomelidae) population to soil insecticides: laboratory bioassays, assays of detoxification enzymes, and field performance.
    Wright RJ; Scharf ME; Meinke LJ; Zhou X; Siegfried BD; Chandler LD
    J Econ Entomol; 2000 Feb; 93(1):7-13. PubMed ID: 14658504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of insecticide resistance and its biochemical mechanisms in 2 strains of Culex quinquefasciatus from Santiago de Cuba].
    Rodríguez MM; Bisset J; Rodríguez I; Díaz C
    Rev Cubana Med Trop; 1997; 49(3):209-14. PubMed ID: 9685989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insecticide cross-resistance spectra and underlying resistance mechanisms of Sri Lankan anopheline vectors of malaria.
    Karunaratne SH
    Southeast Asian J Trop Med Public Health; 1999 Sep; 30(3):460-9. PubMed ID: 10774652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular characterisation and cross-resistance in field and laboratory chlorpyrifos-resistant strains of Laodelphax striatellus (Hemiptera: Delphacidae) from eastern China.
    Xu L; Wu M; Han Z
    Pest Manag Sci; 2014 Jul; 70(7):1118-29. PubMed ID: 24115461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Resistance to insecticides in Blattella germanica species strains from Santiago de Cuba].
    Díaz C; Pérez M; Rodríguez MM; Calvo E; Bisset JA; Fresneda M
    Rev Cubana Med Trop; 2000; 52(1):24-30. PubMed ID: 11107890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.