BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11425070)

  • 1. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation.
    Spears IR; Pfleiderer M; Schneider E; Hille E; Morlock MM
    J Biomech; 2001 Jan; 34(1):113-20. PubMed ID: 11425070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: A finite element study.
    Fallahnezhad K; O'Rourke D; Bahl JS; Thewlis D; Taylor M
    Comput Methods Programs Biomed; 2023 Mar; 230():107351. PubMed ID: 36709556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth.
    Spears IR; Pfleiderer M; Schneider E; Hille E; Bergmann G; Morlock MM
    J Biomech; 2000 Nov; 33(11):1471-7. PubMed ID: 10940406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty].
    Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R
    Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties.
    Janssen D; Zwartelé RE; Doets HC; Verdonschot N
    Proc Inst Mech Eng H; 2010; 224(1):67-75. PubMed ID: 20225458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method to assess primary stability of press-fit acetabular cups.
    Crosnier EA; Keogh PS; Miles AW
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1126-34. PubMed ID: 25384445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dynamic hip motion on the micromotion of press-fit acetabular cups in six degrees of freedom.
    Crosnier EA; Keogh PS; Miles AW
    Med Eng Phys; 2016 Aug; 38(8):717-24. PubMed ID: 27210567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro examination of the primary stability of three press-fit acetabular cups under consideration of two different bearing couples.
    Jahnke A; Bott CC; Fonseca Ulloa CA; Jahnke GW; Rickert M; Ishaque BA; Ahmed GA
    Med Eng Phys; 2019 May; 67():49-54. PubMed ID: 30902521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Contact surface and pressure load at implant-bone interface in press-fit cups compared to natural hip joints].
    Widmer KH; Zurfluh B; Morscher EW
    Orthopade; 1997 Feb; 26(2):181-9. PubMed ID: 9157358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: A finite element study.
    Russell RD; Huo MH; Rodrigues DC; Kosmopoulos V
    Technol Health Care; 2016 Nov; 24(6):865-872. PubMed ID: 27434281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation.
    Spears IR; Morlock MM; Pfleiderer M; Schneider E; Hille E
    J Biomech; 1999 Nov; 32(11):1183-9. PubMed ID: 10541068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sidewall retention and interference fit in total ankle replacement on implant-bone micromotion: A finite element study.
    Johnson JE; Clarke GA; de Cesar Netto C; Anderson DD
    J Orthop Res; 2024 Jul; 42(7):1536-1544. PubMed ID: 38327023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.
    Goebel P; Kluess D; Wieding J; Souffrant R; Heyer H; Sander M; Bader R
    J Orthop Sci; 2013 Mar; 18(2):264-70. PubMed ID: 23377753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation of press-fitted metallic resurfacing cups. Part 2: Finite element simulation.
    Yew A; Jin ZM; Donn A; Morlock MM; Isaac G
    Proc Inst Mech Eng H; 2006 Feb; 220(2):311-9. PubMed ID: 16669397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of different interference fits on the primary fixation of a cementless femoral component during experimental testing.
    Sánchez E; Schilling C; Grupp TM; Giurea A; Wyers C; van den Bergh J; Verdonschot N; Janssen D
    J Mech Behav Biomed Mater; 2021 Jan; 113():104189. PubMed ID: 33158789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient and surgical variability in the primary stability of cementless acetabular cups: A finite element study.
    O'Rourke D; Taylor M
    J Orthop Res; 2020 Jul; 38(7):1515-1522. PubMed ID: 32086833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial stability of cementless acetabular cups: press-fit and screw fixation interaction--an in vitro biomechanical study.
    Tabata T; Kaku N; Hara K; Tsumura H
    Eur J Orthop Surg Traumatol; 2015 Apr; 25(3):497-502. PubMed ID: 25421640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Load transfer and fixation mode of press-fit acetabular sockets.
    Widmer KH; Zurfluh B; Morscher EW
    J Arthroplasty; 2002 Oct; 17(7):926-35. PubMed ID: 12375254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment.
    Ramamurti BS; Orr TE; Bragdon CR; Lowenstein JD; Jasty M; Harris WH
    J Biomed Mater Res; 1997 Aug; 36(2):274-80. PubMed ID: 9261690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.