These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11425075)

  • 1. Machine vision photogrammetry: a technique for measurement of microstructural strain in cortical bone.
    Nicolella DP; Nicholls AE; Lankford J; Davy DT
    J Biomech; 2001 Jan; 34(1):135-9. PubMed ID: 11425075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural strain near osteocyte lacuna in cortical bone in vitro.
    Nicolella DP; Lankford J
    J Musculoskelet Neuronal Interact; 2002 Mar; 2(3):261-3. PubMed ID: 15758448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of microstructural strain in cortical bone.
    Nicolella DP; Bonewald LF; Moravits DE; Lankford J
    Eur J Morphol; 2005; 42(1-2):23-9. PubMed ID: 16123021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring strain using digital image correlation of second harmonic generation images.
    Wentzell S; Sterling Nesbitt R; Macione J; Kotha S
    J Biomech; 2013 Aug; 46(12):2032-8. PubMed ID: 23845730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteocyte lacunae tissue strain in cortical bone.
    Nicolella DP; Moravits DE; Gale AM; Bonewald LF; Lankford J
    J Biomech; 2006; 39(9):1735-43. PubMed ID: 15993413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms.
    Palanca M; Bodey AJ; Giorgi M; Viceconti M; Lacroix D; Cristofolini L; Dall'Ara E
    J Biomech; 2017 Jun; 58():27-36. PubMed ID: 28457604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstrain fields for cortical bone in uniaxial tension: optical analysis method.
    Kim DG; Brunski JB; Nicolella DP
    Proc Inst Mech Eng H; 2005; 219(2):119-28. PubMed ID: 15819483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional local measurements of bone strain and displacement: comparison of three digital volume correlation approaches.
    Palanca M; Tozzi G; Cristofolini L; Viceconti M; Dall'Ara E
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25807338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local bone deformation at two predominant sites for stress fractures of the tibia: an in vivo study.
    Ekenman I; Halvorsen K; Westblad P; Fellander-Tsai L; Rolf C
    Foot Ankle Int; 1998 Jul; 19(7):479-84. PubMed ID: 9694128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation and synchrotron X-ray scattering.
    Gustafsson A; Mathavan N; Turunen MJ; Engqvist J; Khayyeri H; Hall SA; Isaksson H
    Acta Biomater; 2018 Mar; 69():323-331. PubMed ID: 29410089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage.
    Christen D; Levchuk A; Schori S; Schneider P; Boyd SK; Müller R
    J Mech Behav Biomed Mater; 2012 Apr; 8():184-93. PubMed ID: 22402165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic short crack growth in cortical bone.
    Hazenberg JG; Taylor D; Lee TC
    Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.
    Silva FGA; de Moura MFSF; Dourado N; Xavier J; Pereira FAM; Morais JJL; Dias MIR; Lourenço PJ; Judas FM
    Med Biol Eng Comput; 2017 Aug; 55(8):1249-1260. PubMed ID: 27783311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the etiology of the posteromedial tibial stress fracture.
    Milgrom C; Burr DB; Finestone AS; Voloshin A
    Bone; 2015 Sep; 78():11-4. PubMed ID: 25933941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulated intraoral variables on the accuracy of a photogrammetric imaging technique for complete-arch implant prostheses.
    Bratos M; Bergin JM; Rubenstein JE; Sorensen JA
    J Prosthet Dent; 2018 Aug; 120(2):232-241. PubMed ID: 29559220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture Characterization of Human Cortical Bone Under Mode I Loading.
    Silva F; de Moura M; Dourado N; Xavier J; Pereira F; Morais J; Dias M; Lourenço P; Judas F
    J Biomech Eng; 2015 Dec; 137(12):121004. PubMed ID: 26502314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crack growth resistance in cortical bone: concept of microcrack toughening.
    Vashishth D; Behiri JC; Bonfield W
    J Biomech; 1997 Aug; 30(8):763-9. PubMed ID: 9239560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness testing using photogrammetry and digital image correlation.
    Hao Kan W; Albino C; Dias-da-Costa D; Dolman K; Lucey T; Tang X; Cairney J; Proust G
    MethodsX; 2018; 5():1166-1177. PubMed ID: 30364661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading.
    Fleck C; Eifler D
    J Biomech; 2003 Feb; 36(2):179-89. PubMed ID: 12547355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone.
    Liu L; Morgan EF
    J Biomech; 2007; 40(15):3516-20. PubMed ID: 17570374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.