These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analytical method for describing the paraxial region of finite amplitude sound beams. Hamilton MF; Khokhlova VA; Rudenko OV J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621 [TBL] [Abstract][Full Text] [Related]
3. Model equation for strongly focused finite-amplitude sound beams. Kamakura T; Ishiwata T; Matsuda K J Acoust Soc Am; 2000 Jun; 107(6):3035-46. PubMed ID: 10875349 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear distortion of short pulses radiated by plane and focused circular pistons. Averkiou MA; Hamilton MF J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2539-48. PubMed ID: 9373968 [TBL] [Abstract][Full Text] [Related]
5. Harmonic propagation of finite amplitude sound beams: experimental determination of the nonlinearity parameter B/A. Labat V; Remenieras JP; Matar OB; Ouahabi A; Patat F Ultrasonics; 2000 Mar; 38(1-8):292-6. PubMed ID: 10829676 [TBL] [Abstract][Full Text] [Related]
6. Measurements of harmonic generation in a focused finite-amplitude sound beam. Averkiou MA; Hamilton MF J Acoust Soc Am; 1995 Dec; 98(6):3439-42. PubMed ID: 8550950 [TBL] [Abstract][Full Text] [Related]
7. Amplitude degradation of time-reversed pulses in nonlinear absorbing thermoviscous fluids. Hallaj IM; Cleveland R0; Barbone PE; Kargl SG; Roy RA Ultrasonics; 2000 Sep; 38(9):885-9. PubMed ID: 11012010 [TBL] [Abstract][Full Text] [Related]
8. Modeling of pulsed finite-amplitude focused sound beams in time domain. Tavakkoli J; Cathignol D; Souchon R; Sapozhnikov OA J Acoust Soc Am; 1998 Oct; 104(4):2061-72. PubMed ID: 10491689 [TBL] [Abstract][Full Text] [Related]
9. New approaches to nonlinear diffractive field propagation. Christopher PT; Parker KJ J Acoust Soc Am; 1991 Jul; 90(1):488-99. PubMed ID: 1880298 [TBL] [Abstract][Full Text] [Related]
10. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation. Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954 [TBL] [Abstract][Full Text] [Related]
11. Modeling of an electrohydraulic lithotripter with the KZK equation. Averkiou MA; Cleveland RO J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear change of on-axis pressure and intensity maxima positions and its relation with the linear focal shift effect. Makov YN; Sánchez-Morcillo VJ; Camarena F; Espinosa V Ultrasonics; 2008 Dec; 48(8):678-86. PubMed ID: 18442837 [TBL] [Abstract][Full Text] [Related]
13. Bessel beam expansion of linear focused ultrasound. Daniel TD; Gittes F; Kirsteins IP; Marston PL J Acoust Soc Am; 2018 Dec; 144(6):3076. PubMed ID: 30599644 [TBL] [Abstract][Full Text] [Related]
14. Low sidelobe limited diffraction beams in the nonlinear regime. Holm S; Prieur F J Acoust Soc Am; 2010 Sep; 128(3):1015-20. PubMed ID: 20815438 [TBL] [Abstract][Full Text] [Related]
15. Acoustic streaming generated by a focused Gaussian beam and finite amplitude tonebursts. Wu J; Du G Ultrasound Med Biol; 1993; 19(2):167-76. PubMed ID: 8516962 [TBL] [Abstract][Full Text] [Related]
16. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift. Peng S; Jin G; Tingfeng W J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1381-6. PubMed ID: 24323153 [TBL] [Abstract][Full Text] [Related]
17. Time reversed reverberation focusing in a waveguide. Lingevitch JF; Song HC; Kuperman WA J Acoust Soc Am; 2002 Jun; 111(6):2609-14. PubMed ID: 12083192 [TBL] [Abstract][Full Text] [Related]