These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 11425221)
1. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Smith RD; Pasa-Tolić L; Lipton MS; Jensen PK; Anderson GA; Shen Y; Conrads TP; Udseth HR; Harkewicz R; Belov ME; Masselon C; Veenstra TD Electrophoresis; 2001 May; 22(9):1652-68. PubMed ID: 11425221 [TBL] [Abstract][Full Text] [Related]
2. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements. Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187 [TBL] [Abstract][Full Text] [Related]
3. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175 [TBL] [Abstract][Full Text] [Related]
4. Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. Martinović S; Veenstra TD; Anderson GA; Pasa-Tolić L; Smith RD J Mass Spectrom; 2002 Jan; 37(1):99-107. PubMed ID: 11813317 [TBL] [Abstract][Full Text] [Related]
5. Proteome analysis of Escherichia coli using high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Ihling C; Sinz A Proteomics; 2005 May; 5(8):2029-42. PubMed ID: 15852340 [TBL] [Abstract][Full Text] [Related]
6. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035 [TBL] [Abstract][Full Text] [Related]
7. Gene expression profiling using advanced mass spectrometric approaches. Pasa-Tolić L; Lipton MS; Masselon CD; Anderson GA; Shen Y; Tolić N; Smith RD J Mass Spectrom; 2002 Dec; 37(12):1185-98. PubMed ID: 12489076 [TBL] [Abstract][Full Text] [Related]
8. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
9. Application of mass spectrometry in proteomics. Guerrera IC; Kleiner O Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421 [TBL] [Abstract][Full Text] [Related]
10. Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures. Jensen PK; Pasa-Tolić L; Peden KK; Martinović S; Lipton MS; Anderson GA; Tolić N; Wong KK; Smith RD Electrophoresis; 2000 Apr; 21(7):1372-80. PubMed ID: 10826683 [TBL] [Abstract][Full Text] [Related]
11. The interface of capillary electrophoresis with high performance Fourier transform ion cyclotron resonance mass spectrometry for biomolecule characterization. Severs JC; Hofstadler SA; Zhao Z; Senh RT; Smith RD Electrophoresis; 1996 Dec; 17(12):1808-17. PubMed ID: 9034761 [TBL] [Abstract][Full Text] [Related]
12. Mass spectrometric approaches for characterizing bacterial proteomes. VerBerkmoes NC; Connelly HM; Pan C; Hettich RL Expert Rev Proteomics; 2004 Dec; 1(4):433-47. PubMed ID: 15966840 [TBL] [Abstract][Full Text] [Related]
13. High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Qian WJ; Camp DG; Smith RD Expert Rev Proteomics; 2004 Jun; 1(1):87-95. PubMed ID: 15966802 [TBL] [Abstract][Full Text] [Related]
14. Understanding the influence of post-excite radius and axial confinement on quantitative proteomic measurements using Fourier transform ion cyclotron resonance mass spectrometry. Frahm JL; Velez CM; Muddiman DC Rapid Commun Mass Spectrom; 2007; 21(7):1196-204. PubMed ID: 17330212 [TBL] [Abstract][Full Text] [Related]
15. Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Dihazi GH; Sinz A Rapid Commun Mass Spectrom; 2003; 17(17):2005-14. PubMed ID: 12913864 [TBL] [Abstract][Full Text] [Related]
16. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics. Shen Y; Smith RD Expert Rev Proteomics; 2005 Jun; 2(3):431-47. PubMed ID: 16000088 [TBL] [Abstract][Full Text] [Related]
17. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Kalkhof S; Ihling C; Mechtler K; Sinz A Anal Chem; 2005 Jan; 77(2):495-503. PubMed ID: 15649045 [TBL] [Abstract][Full Text] [Related]
18. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Roe MR; Griffin TJ Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762 [TBL] [Abstract][Full Text] [Related]
19. FTICR mass spectrometry for qualitative and quantitative bioanalyses. Page JS; Masselon CD; Smith RD Curr Opin Biotechnol; 2004 Feb; 15(1):3-11. PubMed ID: 15102459 [TBL] [Abstract][Full Text] [Related]