BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 11425310)

  • 1. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch.
    Ramos LS; Chen MH; Knox BE; Birge RR
    Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototransduction by vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base following photobleaching.
    Dukkipati A; Kusnetzow A; Babu KR; Ramos L; Singh D; Knox BE; Birge RR
    Biochemistry; 2002 Aug; 41(31):9842-51. PubMed ID: 12146950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment.
    Imai H; Terakita A; Tachibanaki S; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1997 Oct; 36(42):12773-9. PubMed ID: 9335534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosecond laser photolysis of iodopsin, a chicken red-sensitive cone visual pigment.
    Shichida Y; Okada T; Kandori H; Fukada Y; Yoshizawa T
    Biochemistry; 1993 Oct; 32(40):10832-8. PubMed ID: 8399233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the photobleaching process between 7-cis- and 11-cis-rhodopsins: a unique interaction change between the chromophore and the protein during the lumi-meta I transition.
    Shichida Y; Kandori H; Okada T; Yoshizawa T; Nakashima N; Yoshihara K
    Biochemistry; 1991 Jun; 30(24):5918-26. PubMed ID: 1828372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical reactions of 13-demethyl visual pigment analogues at low temperatures.
    Shichida Y; Kropf A; Yoshizawa T
    Biochemistry; 1981 Mar; 20(7):1962-8. PubMed ID: 6452903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic interaction between retinylidene chromophore and opsin in rhodopsin studied by fluorinated rhodopsin analogues.
    Shichida Y; Ono T; Yoshizawa T; Matsumoto H; Asato AE; Zingoni JP; Liu RS
    Biochemistry; 1987 Jul; 26(14):4422-8. PubMed ID: 2959317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeric nature of pinopsin between rod and cone visual pigments.
    Nakamura A; Kojima D; Imai H; Terakita A; Okano T; Shichida Y; Fukada Y
    Biochemistry; 1999 Nov; 38(45):14738-45. PubMed ID: 10555955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An additional methyl group at the 10-position of retinal dramatically slows down the kinetics of the rhodopsin photocascade.
    DeLange F; Bovee-Geurts PH; VanOostrum J; Portier MD; Verdegem PJ; Lugtenburg J; DeGrip WJ
    Biochemistry; 1998 Feb; 37(5):1411-20. PubMed ID: 9477970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early photolysis intermediates of gecko and bovine artificial visual pigments.
    Lewis JW; Liang J; Ebrey TG; Sheves M; Livnah N; Kuwata O; Jäger S; Kliger DS
    Biochemistry; 1997 Nov; 36(47):14593-600. PubMed ID: 9398178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells.
    Imai H; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1995 Aug; 34(33):10525-31. PubMed ID: 7654707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression of a Xenopus short wavelength cone pigment.
    Starace DM; Knox BE
    Exp Eye Res; 1998 Aug; 67(2):209-20. PubMed ID: 9733587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.