These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 11425311)

  • 1. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II.
    Comer FI; Hart GW
    Biochemistry; 2001 Jul; 40(26):7845-52. PubMed ID: 11425311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II.
    Lu L; Fan D; Hu CW; Worth M; Ma ZX; Jiang J
    Biochemistry; 2016 Feb; 55(7):1149-58. PubMed ID: 26807597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo.
    Ranuncolo SM; Ghosh S; Hanover JA; Hart GW; Lewis BA
    J Biol Chem; 2012 Jul; 287(28):23549-61. PubMed ID: 22605332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc.
    Kelly WG; Dahmus ME; Hart GW
    J Biol Chem; 1993 May; 268(14):10416-24. PubMed ID: 8486697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates.
    Lazarus BD; Love DC; Hanover JA
    Glycobiology; 2006 May; 16(5):415-21. PubMed ID: 16434389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate.
    Haltiwanger RS; Grove K; Philipsberg GA
    J Biol Chem; 1998 Feb; 273(6):3611-7. PubMed ID: 9452489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-GlcNAc and the epigenetic regulation of gene expression.
    Lewis BA; Hanover JA
    J Biol Chem; 2014 Dec; 289(50):34440-8. PubMed ID: 25336654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells.
    Hanover JA; Lai Z; Lee G; Lubas WA; Sato SM
    Arch Biochem Biophys; 1999 Feb; 362(1):38-45. PubMed ID: 9917327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial purification and characterization of two distinct protein kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase subunit IIa.
    Payne JM; Dahmus ME
    J Biol Chem; 1993 Jan; 268(1):80-7. PubMed ID: 8416977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain.
    Baskaran R; Dahmus ME; Wang JY
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11167-71. PubMed ID: 7504297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress.
    Zachara NE; Hart GW
    Biochim Biophys Acta; 2004 Jul; 1673(1-2):13-28. PubMed ID: 15238246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors.
    Macauley MS; Whitworth GE; Debowski AW; Chin D; Vocadlo DJ
    J Biol Chem; 2005 Jul; 280(27):25313-22. PubMed ID: 15795231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation.
    Whelan SA; Hart GW
    Circ Res; 2003 Nov; 93(11):1047-58. PubMed ID: 14645135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
    Chapman RD; Palancade B; Lang A; Bensaude O; Eick D
    Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase.
    Wells L; Gao Y; Mahoney JA; Vosseller K; Chen C; Rosen A; Hart GW
    J Biol Chem; 2002 Jan; 277(3):1755-61. PubMed ID: 11788610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human RNA Polymerase II Promoter Recruitment in Vitro Is Regulated by O-Linked N-Acetylglucosaminyltransferase (OGT).
    Lewis BA; Burlingame AL; Myers SA
    J Biol Chem; 2016 Jul; 291(27):14056-14061. PubMed ID: 27129214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis.
    Rao FV; Dorfmueller HC; Villa F; Allwood M; Eggleston IM; van Aalten DM
    EMBO J; 2006 Apr; 25(7):1569-78. PubMed ID: 16541109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.