These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 11425321)

  • 1. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate.
    Pan D; Ganim Z; Kim JE; Verhoeven MA; Lugtenburg J; Mathies RA
    J Am Chem Soc; 2002 May; 124(17):4857-64. PubMed ID: 11971736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment.
    Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA
    Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome.
    Andel F; Lagarias JC; Mathies RA
    Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II.
    Ishiguro M; Oyama Y; Hirano T
    Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.
    Eyring G; Mathies R
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct.
    Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA
    Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.
    Ujj L; Jäger F; Atkinson GH
    Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin.
    Murakami M; Kouyama T
    PLoS One; 2015; 10(5):e0126970. PubMed ID: 26024518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.