These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 11425565)
1. Mutation of cysteine-295 to alanine in secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus affects the enantioselectivity and substrate specificity of ketone reductions. Heiss C; Laivenieks M; Zeikus JG; Phillips RS Bioorg Med Chem; 2001 Jul; 9(7):1659-66. PubMed ID: 11425565 [TBL] [Abstract][Full Text] [Related]
2. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones. Nealon CM; Welsh TP; Kim CS; Phillips RS Arch Biochem Biophys; 2016 Sep; 606():151-6. PubMed ID: 27495738 [TBL] [Abstract][Full Text] [Related]
3. Mutagenesis of Met-151 and Thr-153 to alanine in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase changes substrate specificity for acetophenones. Nealon CM; Kim CS; Dwamena AK; Phillips RS Enzyme Microb Technol; 2017 Oct; 105():59-63. PubMed ID: 28756862 [TBL] [Abstract][Full Text] [Related]
4. Impact of Expanded Small Alkyl-Binding Pocket by Triple Point Mutations on Substrate Specificity of Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase. Dwamena A; Phillips R; Kim CS J Microbiol Biotechnol; 2019 Mar; 29(3):373-381. PubMed ID: 30609883 [TBL] [Abstract][Full Text] [Related]
5. Crystallization and preliminary X-ray diffraction analysis of the Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase I86A mutant. Protsko C; Vieille C; Laivenieks M; Prasad L; Sanders DA; Delbaere LT Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jul; 66(Pt 7):831-3. PubMed ID: 20606285 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. Musa MM; Ziegelmann-Fjeld KI; Vieille C; Zeikus JG; Phillips RS J Org Chem; 2007 Jan; 72(1):30-4. PubMed ID: 17194078 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic snapshots of ternary complexes of thermophilic secondary alcohol dehydrogenase from Thermoanaerobacter pseudoethanolicus reveal the dynamics of ligand exchange and the proton relay network. Dinh T; Rahn KT; Phillips RS Proteins; 2022 Aug; 90(8):1570-1583. PubMed ID: 35357038 [TBL] [Abstract][Full Text] [Related]
8. A Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase mutant derivative highly active and stereoselective on phenylacetone and benzylacetone. Ziegelmann-Fjeld KI; Musa MM; Phillips RS; Zeikus JG; Vieille C Protein Eng Des Sel; 2007 Feb; 20(2):47-55. PubMed ID: 17283007 [TBL] [Abstract][Full Text] [Related]
9. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme. Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957 [TBL] [Abstract][Full Text] [Related]
10. Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction. Patel JM; Musa MM; Rodriguez L; Sutton DA; Popik VV; Phillips RS Org Biomol Chem; 2014 Aug; 12(31):5905-10. PubMed ID: 24984815 [TBL] [Abstract][Full Text] [Related]
12. Exploring the reversal of enantioselectivity on a zinc-dependent alcohol dehydrogenase. Maria-Solano MA; Romero-Rivera A; Osuna S Org Biomol Chem; 2017 May; 15(19):4122-4129. PubMed ID: 28436515 [TBL] [Abstract][Full Text] [Related]
13. Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. Parkot J; Gröger H; Hummel W Appl Microbiol Biotechnol; 2010 May; 86(6):1813-20. PubMed ID: 20054534 [TBL] [Abstract][Full Text] [Related]
14. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH). Wang T; Chen X; Han J; Ma S; Wang J; Li X; Zhang H; Liu Z; Yang Y Int J Biol Macromol; 2016 Jul; 88():385-91. PubMed ID: 27016086 [TBL] [Abstract][Full Text] [Related]
15. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Koesoema AA; Standley DM; Senda T; Matsuda T Appl Microbiol Biotechnol; 2020 Apr; 104(7):2897-2909. PubMed ID: 32060695 [TBL] [Abstract][Full Text] [Related]
17. Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase activity and specificity. Burdette DS; Secundo F; Phillips RS; Dong J; Scott RA; Zeikus JG Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):717-24. PubMed ID: 9307020 [TBL] [Abstract][Full Text] [Related]
18. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93. Kim K; Plapp BV Chem Biol Interact; 2017 Oct; 276():77-87. PubMed ID: 28025168 [TBL] [Abstract][Full Text] [Related]
19. Quantum chemical study of mechanism and stereoselectivity of secondary alcohol dehydrogenase. Moa S; Himo F J Inorg Biochem; 2017 Oct; 175():259-266. PubMed ID: 28803132 [TBL] [Abstract][Full Text] [Related]
20. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. Shain DH; Salvadore C; Denis CL Mol Gen Genet; 1992 Apr; 232(3):479-88. PubMed ID: 1588917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]