These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 11425753)
21. Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Jiannino JA; Federici BA; Walton WE J Invertebr Pathol; 2005 Feb; 88(2):154-62. PubMed ID: 15766932 [TBL] [Abstract][Full Text] [Related]
22. Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B, and the Bacillus sphaericus binary toxin. Park HW; Bideshi DK; Federici BA Appl Environ Microbiol; 2003 Feb; 69(2):1331-4. PubMed ID: 12571069 [TBL] [Abstract][Full Text] [Related]
23. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
24. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
25. Laboratory selection for resistance to Bacillus thuringiensis subsp. jegathesan or a component toxin, Cry11B, in Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Delécluse A; Walton WE J Med Entomol; 2004 May; 41(3):435-41. PubMed ID: 15185947 [TBL] [Abstract][Full Text] [Related]
26. Laboratory selection for resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA. Wirth MC; Georghiou GP; Malik JI; Abro GH J Med Entomol; 2000 Jul; 37(4):534-40. PubMed ID: 10916293 [TBL] [Abstract][Full Text] [Related]
27. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus. Wirth MC; Berry C; Walton WE; Federici BA J Invertebr Pathol; 2014 Jan; 115():62-7. PubMed ID: 24144574 [TBL] [Abstract][Full Text] [Related]
28. Toxicity of protease-resistant domains from the delta-endotoxin of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus and Aedes aegypti bioassays. Pfannenstiel MA; Cray WC; Couche GA; Nickerson KW Appl Environ Microbiol; 1990 Jan; 56(1):162-6. PubMed ID: 2155575 [TBL] [Abstract][Full Text] [Related]
29. Proteolytic processing of the Cyt1Ab1 toxin produced by Bacillus thuringiensis subsp. medellin. Escobar E; Segura C; Vanegas M; Patarroyo ME; Orduz S Mem Inst Oswaldo Cruz; 2000; 95(5):693-700. PubMed ID: 10998218 [TBL] [Abstract][Full Text] [Related]
30. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus. Wirth MC; Walton WE; Federici BA J Med Entomol; 2015 Sep; 52(5):1028-35. PubMed ID: 26336254 [TBL] [Abstract][Full Text] [Related]
31. Marginal cross-resistance to mosquitocidal Bacillus thuringiensis strains in Cry11A-resistant larvae: presence of Cry11A-like toxins in these strains. Cheong H; Dhesi RK; Gill SS FEMS Microbiol Lett; 1997 Aug; 153(2):419-24. PubMed ID: 9271871 [TBL] [Abstract][Full Text] [Related]
32. Coexpression of cyt1Aa of Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus binary toxin gene in acrystalliferous strain of B. thuringiensis. Li T; Sun F; Yuan Z; Zhang Y; Yu J; Pang Y Curr Microbiol; 2000 May; 40(5):322-6. PubMed ID: 10706663 [TBL] [Abstract][Full Text] [Related]
33. Lack of cross-resistance to Mtx1 from Bacillus sphaericus in B. sphaericus-resistant Culex quinquefasciatus (Diptera: Culicidae). Wei S; Cai Q; Cai Y; Yuan Z Pest Manag Sci; 2007 Feb; 63(2):190-3. PubMed ID: 17103380 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. Angsuthanasombat C; Crickmore N; Ellar DJ FEMS Microbiol Lett; 1992 Jul; 73(1-2):63-8. PubMed ID: 1355748 [TBL] [Abstract][Full Text] [Related]
35. Inheritance patterns, dominance, stability, and allelism of insecticide resistance and cross-resistance in two colonies of Culex quinquefasciatus (Diptera: Culicidae) selected with cry toxins from Bacillus thuringiensis subsp, israelensis. Wirth MC; Walton WE; Federici BA J Med Entomol; 2010 Sep; 47(5):814-22. PubMed ID: 20939376 [TBL] [Abstract][Full Text] [Related]
36. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
37. Molecular cloning of the 130-kilodalton mosquitocidal delta-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. Trisrisook M; Pantuwatana S; Bhumiratana A; Panbangred W Appl Environ Microbiol; 1990 Jun; 56(6):1710-6. PubMed ID: 2200339 [TBL] [Abstract][Full Text] [Related]
38. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Bourgouin C; Delécluse A; de la Torre F; Szulmajster J Appl Environ Microbiol; 1990 Feb; 56(2):340-4. PubMed ID: 2306087 [TBL] [Abstract][Full Text] [Related]
39. Comparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvae. Pantuwatana S; Sattabongkot J J Invertebr Pathol; 1990 Mar; 55(2):189-201. PubMed ID: 1969455 [TBL] [Abstract][Full Text] [Related]
40. Mosquitocidal activity of the CryIC delta-endotoxin from Bacillus thuringiensis subsp. aizawai. Smith GP; Merrick JD; Bone EJ; Ellar DJ Appl Environ Microbiol; 1996 Feb; 62(2):680-4. PubMed ID: 8593070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]