These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 11425900)
1. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. Cai D; Qiu J; Cao Z; McAtee M; Bregman BS; Filbin MT J Neurosci; 2001 Jul; 21(13):4731-9. PubMed ID: 11425900 [TBL] [Abstract][Full Text] [Related]
2. Regeneration in the central nervous system. Bandtlow CE Exp Gerontol; 2003; 38(1-2):79-86. PubMed ID: 12543264 [TBL] [Abstract][Full Text] [Related]
3. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Cai D; Shen Y; De Bellard M; Tang S; Filbin MT Neuron; 1999 Jan; 22(1):89-101. PubMed ID: 10027292 [TBL] [Abstract][Full Text] [Related]
4. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. Peterson SL; Nguyen HX; Mendez OA; Anderson AJ J Neurosci; 2015 Mar; 35(10):4332-49. PubMed ID: 25762679 [TBL] [Abstract][Full Text] [Related]
5. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. DeBellard ME; Tang S; Mukhopadhyay G; Shen YJ; Filbin MT Mol Cell Neurosci; 1996 Feb; 7(2):89-101. PubMed ID: 8731478 [TBL] [Abstract][Full Text] [Related]
6. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Cai D; Deng K; Mellado W; Lee J; Ratan RR; Filbin MT Neuron; 2002 Aug; 35(4):711-9. PubMed ID: 12194870 [TBL] [Abstract][Full Text] [Related]
15. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. Ma TC; Campana A; Lange PS; Lee HH; Banerjee K; Bryson JB; Mahishi L; Alam S; Giger RJ; Barnes S; Morris SM; Willis DE; Twiss JL; Filbin MT; Ratan RR J Neurosci; 2010 Jan; 30(2):739-48. PubMed ID: 20071539 [TBL] [Abstract][Full Text] [Related]
16. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Chierzi S; Ratto GM; Verma P; Fawcett JW Eur J Neurosci; 2005 Apr; 21(8):2051-62. PubMed ID: 15869501 [TBL] [Abstract][Full Text] [Related]
17. Chimaerins act downstream from neurotrophins in overcoming the inhibition of neurite outgrowth produced by myelin-associated glycoprotein. Mizuno T; Yamashita T; Tohyama M J Neurochem; 2004 Oct; 91(2):395-403. PubMed ID: 15447672 [TBL] [Abstract][Full Text] [Related]
18. Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. Deng K; He H; Qiu J; Lorber B; Bryson JB; Filbin MT J Neurosci; 2009 Jul; 29(30):9545-52. PubMed ID: 19641117 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. Wong EV; David S; Jacob MH; Jay DG J Neurosci; 2003 Apr; 23(8):3112-7. PubMed ID: 12716917 [TBL] [Abstract][Full Text] [Related]
20. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. Li M; Shibata A; Li C; Braun PE; McKerracher L; Roder J; Kater SB; David S J Neurosci Res; 1996 Nov; 46(4):404-14. PubMed ID: 8950700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]