These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 11426394)
1. Repairing segmental bone defects with living porous ceramic cylinders: an experimental study in dog femora. Cong Z; Jianxin W; Huaizhi F; Bing L; Xingdong Z J Biomed Mater Res; 2001 Apr; 55(1):28-32. PubMed ID: 11426394 [TBL] [Abstract][Full Text] [Related]
2. Replacement of segmental bone defects using porous bioceramic cylinders: a biomechanical and X-ray diffraction study. Zhang C; Wang J; Feng H; Lu B; Song Z; Zhang X J Biomed Mater Res; 2001 Mar; 54(3):407-11. PubMed ID: 11189048 [TBL] [Abstract][Full Text] [Related]
3. Osteoinductivity and biomechanics of a porous ceramic with autogenic periosteum. Cong Z; Jianxin W; Xingdong Z J Biomed Mater Res; 2000 Nov; 52(2):354-9. PubMed ID: 10951375 [TBL] [Abstract][Full Text] [Related]
4. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. Bruder SP; Kraus KH; Goldberg VM; Kadiyala S J Bone Joint Surg Am; 1998 Jul; 80(7):985-96. PubMed ID: 9698003 [TBL] [Abstract][Full Text] [Related]
5. Bioactivity and osseointegration study of calcium phosphate ceramic of different chemical composition. Manjubala I; Sivakumar M; Sureshkumar RV; Sastry TP J Biomed Mater Res; 2002; 63(2):200-8. PubMed ID: 11870654 [TBL] [Abstract][Full Text] [Related]
6. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Kai T; Shao-qing G; Geng-ting D Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487 [TBL] [Abstract][Full Text] [Related]
7. Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. Manjubala I; Sastry TP; Kumar RV J Biomater Appl; 2005 Apr; 19(4):341-60. PubMed ID: 15788429 [TBL] [Abstract][Full Text] [Related]
8. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Yuan H; Yang Z; De Bruij JD; De Groot K; Zhang X Biomaterials; 2001 Oct; 22(19):2617-23. PubMed ID: 11519781 [TBL] [Abstract][Full Text] [Related]
9. A long-term evaluation of osteoinductive HA/beta-TCP ceramics in vivo: 4.5 years study in pigs. Ye F; Lu X; Lu B; Wang J; Shi Y; Zhang L; Chen J; Li Y; Bu H J Mater Sci Mater Med; 2007 Nov; 18(11):2173-8. PubMed ID: 17874226 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. Alam I; Asahina I; Ohmamiuda K; Enomoto S J Biomed Mater Res; 2001 Jan; 54(1):129-38. PubMed ID: 11077412 [TBL] [Abstract][Full Text] [Related]
11. [Stimulating regeneration of bone defects by implantation of bioceramics and autologous osteoblast transplantation]. Henkel KO; Gerber T; Dörfling P; Härtel J; Jonas L; Gundlach KK; Bienengräber V Mund Kiefer Gesichtschir; 2002 Mar; 6(2):59-65. PubMed ID: 12017875 [TBL] [Abstract][Full Text] [Related]
12. [Comparative study on using TTCP and CTCP ceramic artificial bone for repairing segment defect of long bone]. Shi X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):586-8. PubMed ID: 12561354 [TBL] [Abstract][Full Text] [Related]
13. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
14. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Grundel RE; Chapman MW; Yee T; Moore DC Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335 [TBL] [Abstract][Full Text] [Related]
15. [Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes]. Chouteau J; Bignon A; Chavassieux P; Chevalier J; Melin M; Fantozzi G; Boivin G; Hartmann D; Carret JP Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):44-52. PubMed ID: 12610435 [TBL] [Abstract][Full Text] [Related]
16. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
17. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615 [TBL] [Abstract][Full Text] [Related]
18. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. Yuan H; van Blitterswijk CA; de Groot K; de Bruijn JD J Biomed Mater Res A; 2006 Jul; 78(1):139-47. PubMed ID: 16619253 [TBL] [Abstract][Full Text] [Related]
19. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645 [TBL] [Abstract][Full Text] [Related]
20. Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone. Nishikawa T; Masuno K; Tominaga K; Koyama Y; Yamada T; Takakuda K; Kikuchi M; Tanaka J; Tanaka A Implant Dent; 2005 Sep; 14(3):252-60. PubMed ID: 16160571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]