These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 11426601)
1. Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. Guo L; Guo X; Leng Y; Cheng JC; Zhang X J Biomed Mater Res; 2001 Mar; 54(4):554-9. PubMed ID: 11426601 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Kraiwattanapong C; Boden SD; Louis-Ugbo J; Attallah E; Barnes B; Hutton WC Spine (Phila Pa 1976); 2005 May; 30(9):1001-7; discussion 1007. PubMed ID: 15864149 [TBL] [Abstract][Full Text] [Related]
3. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Boden SD; Martin GJ; Morone MA; Ugbo JL; Moskovitz PA Spine (Phila Pa 1976); 1999 Jun; 24(12):1179-85. PubMed ID: 10382242 [TBL] [Abstract][Full Text] [Related]
4. Low-intensity pulsed ultrasound enhances posterior spinal fusion implanted with mesenchymal stem cells-calcium phosphate composite without bone grafting. Hui CF; Chan CW; Yeung HY; Lee KM; Qin L; Li G; Leung KS; Hu YY; Cheng JC Spine (Phila Pa 1976); 2011 Jun; 36(13):1010-6. PubMed ID: 21325987 [TBL] [Abstract][Full Text] [Related]
5. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Suh DY; Boden SD; Louis-Ugbo J; Mayr M; Murakami H; Kim HS; Minamide A; Hutton WC Spine (Phila Pa 1976); 2002 Feb; 27(4):353-60. PubMed ID: 11840099 [TBL] [Abstract][Full Text] [Related]
6. Preparation of combined β-TCP/α-CSH artificial bone graft and its performance in a spinal fusion model. Mao K; Cui F; Li J; Hao L; Tang P; Wang Z; Wen N; Liang M; Wang J; Wang Y J Biomater Appl; 2012 Jul; 27(1):37-45. PubMed ID: 21343212 [TBL] [Abstract][Full Text] [Related]
7. A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments. Wilson CE; Kruyt MC; de Bruijn JD; van Blitterswijk CA; Oner FC; Verbout AJ; Dhert WJ Biomaterials; 2006 Jan; 27(3):302-14. PubMed ID: 16111745 [TBL] [Abstract][Full Text] [Related]
8. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
9. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Kai T; Shao-qing G; Geng-ting D Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
11. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate in a rabbit model. Namikawa T; Terai H; Suzuki E; Hoshino M; Toyoda H; Nakamura H; Miyamoto S; Takahashi N; Ninomiya T; Takaoka K Spine (Phila Pa 1976); 2005 Aug; 30(15):1717-22. PubMed ID: 16094272 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356 [TBL] [Abstract][Full Text] [Related]
14. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. Yang C; Unursaikhan O; Lee JS; Jung UW; Kim CS; Choi SH J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):80-8. PubMed ID: 23852942 [TBL] [Abstract][Full Text] [Related]
15. Effect of Hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Motomiya M; Ito M; Takahata M; Kadoya K; Irie K; Abumi K; Minami A Eur Spine J; 2007 Dec; 16(12):2215-24. PubMed ID: 17891422 [TBL] [Abstract][Full Text] [Related]
16. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Minamide A; Yoshida M; Kawakami M; Yamasaki S; Kojima H; Hashizume H; Boden SD Spine (Phila Pa 1976); 2005 May; 30(10):1134-8. PubMed ID: 15897826 [TBL] [Abstract][Full Text] [Related]
17. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine. Pugely AJ; Petersen EB; DeVries-Watson N; Fredericks DC Iowa Orthop J; 2017; 37():193-198. PubMed ID: 28852357 [TBL] [Abstract][Full Text] [Related]
18. How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion? Cheng JC; Guo X; Law LP; Lee KM; Chow DH; Rosier R Spine (Phila Pa 1976); 2002 Mar; 27(5):467-74. PubMed ID: 11880831 [TBL] [Abstract][Full Text] [Related]
19. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Toth JM; An HS; Lim TH; Ran Y; Weiss NG; Lundberg WR; Xu RM; Lynch KL Spine (Phila Pa 1976); 1995 Oct; 20(20):2203-10. PubMed ID: 8545713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]