These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 11426886)
1. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Mendes SC; Reis RL; Bovell YP; Cunha AM; van Blitterswijk CA; de Bruijn JD Biomaterials; 2001 Jul; 22(14):2057-64. PubMed ID: 11426886 [TBL] [Abstract][Full Text] [Related]
2. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Marques AP; Reis RL; Hunt JA Biomaterials; 2002 Mar; 23(6):1471-8. PubMed ID: 11829443 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement. Chu C; Xue X; Zhu J; Yin Z J Mater Sci Mater Med; 2004 Jun; 15(6):665-70. PubMed ID: 15346733 [TBL] [Abstract][Full Text] [Related]
4. In vitro biomechanical and biocompatible evaluation of natural hydroxyapatite/chitosan composite for bone repair. Lü X; Zheng B; Tang X; Zhao L; Lu J; Zhang Z; Zhang J; Cui W J Appl Biomater Biomech; 2011; 9(1):11-8. PubMed ID: 21445829 [TBL] [Abstract][Full Text] [Related]
5. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. Shakir M; Jolly R; Khan MS; Iram Ne; Khan HM Int J Biol Macromol; 2015 Sep; 80():282-92. PubMed ID: 26116779 [TBL] [Abstract][Full Text] [Related]
6. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering. Mahdieh Z; Bagheri R; Eslami M; Amiri M; Shokrgozar MA; Mehrjoo M Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():301-10. PubMed ID: 27612717 [TBL] [Abstract][Full Text] [Related]
7. Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. Salgado AJ; Figueiredo JE; Coutinho OP; Reis RL J Mater Sci Mater Med; 2005 Mar; 16(3):267-75. PubMed ID: 15744619 [TBL] [Abstract][Full Text] [Related]
8. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Gomes ME; Reis RL; Cunha AM; Blitterswijk CA; de Bruijn JD Biomaterials; 2001 Jul; 22(13):1911-7. PubMed ID: 11396897 [TBL] [Abstract][Full Text] [Related]
9. Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery. Li H; Tao S; Yan Y; Lv G; Gu Y; Luo X; Yang L; Wei J J Biomater Sci Polym Ed; 2014; 25(11):1194-210. PubMed ID: 24927061 [TBL] [Abstract][Full Text] [Related]
10. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904 [TBL] [Abstract][Full Text] [Related]
11. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136 [TBL] [Abstract][Full Text] [Related]
12. In vivo behavior of zirconia hydroxyapatite (ZH) ceramic implants in dogs: a clinical, radiographic, and histological study. Sá MJ; Rezende CM; Silva Junior VA; Garcia HC; Griffon DJ; Silva VV J Biomater Appl; 2007 Jul; 22(1):5-31. PubMed ID: 17690118 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo evaluation of the inflammatory potential of various nanoporous hydroxyapatite biomaterials. Velard F; Schlaubitz S; Fricain JC; Guillaume C; Laurent-Maquin D; Möller-Siegert J; Vidal L; Jallot E; Sayen S; Raissle O; Nedelec JM; Vix-Guterl C; Anselme K; Amédée J; Laquerrière P Nanomedicine (Lond); 2015; 10(5):785-802. PubMed ID: 25816880 [TBL] [Abstract][Full Text] [Related]
14. Analysis of a biodegradable composite for bone healing. Flahiff CM; Blackwell AS; Hollis JM; Feldman DS J Biomed Mater Res; 1996 Nov; 32(3):419-24. PubMed ID: 8897147 [TBL] [Abstract][Full Text] [Related]
15. In vivo response to starch-based scaffolds designed for bone tissue engineering applications. Salgado AJ; Coutinho OP; Reis RL; Davies JE J Biomed Mater Res A; 2007 Mar; 80(4):983-9. PubMed ID: 17109411 [TBL] [Abstract][Full Text] [Related]
16. Changes on surface morphology of corn starch blend films. Araújo MA; Cunha AM; Mota M J Biomed Mater Res A; 2010 Sep; 94(3):720-9. PubMed ID: 20225217 [TBL] [Abstract][Full Text] [Related]
17. In vivo study on biocompatibility and bonding strength of hydroxyapatite-20vol%Ti composite with bone tissues in the rabbit. Chu CL; Xue XY; Zhu JC; Yin ZD Biomed Mater Eng; 2006; 16(3):203-13. PubMed ID: 16518019 [TBL] [Abstract][Full Text] [Related]
18. An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Marques AP; Reis RL; Hunt JA Macromol Biosci; 2005 Aug; 5(8):775-85. PubMed ID: 16080170 [TBL] [Abstract][Full Text] [Related]
19. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202 [TBL] [Abstract][Full Text] [Related]
20. Keratin-hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. Dias GJ; Mahoney P; Swain M; Kelly RJ; Smith RA; Ali MA J Biomed Mater Res A; 2010 Dec; 95(4):1084-95. PubMed ID: 20878901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]