These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 114271)

  • 21. Effects of chronic epileptic foci on control of pyramidal tract neurons in monkeys.
    Wyler AR; Burchiel KJ
    Epilepsia; 1978 Dec; 19(6):547-54. PubMed ID: 104868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Operant conditioning of epileptic neurons in monkeys and its theoretical application to EEG operant conditioning in humans.
    Wyler AR
    Pavlov J Biol Sci; 1977; 12(3):130-46. PubMed ID: 411099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precentral and postcentral cortical activity in association with visually triggered movement.
    Evarts EV
    J Neurophysiol; 1974 Mar; 37(2):373-81. PubMed ID: 4205569
    [No Abstract]   [Full Text] [Related]  

  • 24. Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement.
    Brinkman C; Porter R
    Adv Neurol; 1983; 39():393-420. PubMed ID: 6419554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic reinforcement from operant wheel-running undermines temporal control by fixed-interval schedules of reinforcement.
    Belke TW; Pierce WD; Welsh TM
    Behav Processes; 2018 Dec; 157():91-101. PubMed ID: 30219288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Operant conditioning of eye movement in the monkey (Macaca nemestrina).
    Berger RJ
    J Exp Anal Behav; 1968 May; 11(3):311-20. PubMed ID: 4969215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task dependence of slowing after pyramidal lesions in monkeys.
    Laursen AM
    J Comp Physiol Psychol; 1977 Aug; 91(4):897-906. PubMed ID: 408382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of pyramidal tract neuron system within a functionally defined subregion of primate motor cortex.
    Humphrey DR; Corrie WS
    J Neurophysiol; 1978 Jan; 41(1):216-43. PubMed ID: 413887
    [No Abstract]   [Full Text] [Related]  

  • 29. Preparatory activity of monkey pyramidal tract neurons related to quick movement onset during visual tracking performance.
    Kubota K; Hamada I
    Brain Res; 1979 May; 168(2):435-9. PubMed ID: 109169
    [No Abstract]   [Full Text] [Related]  

  • 30. Nucleus accumbens neurons in the rat exhibit differential activity to conditioned reinforcers and primary reinforcers within a second-order schedule of saccharin reinforcement.
    Wilson DI; Bowman EM
    Eur J Neurosci; 2004 Nov; 20(10):2777-88. PubMed ID: 15548221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Operantly conditioned firing patterns of epileptic neurons in the monkey motor cortex.
    Fetz EE; Wyler AR
    Exp Neurol; 1973 Sep; 40(3):586-607. PubMed ID: 4353254
    [No Abstract]   [Full Text] [Related]  

  • 32. Regional changes in brain catecholamine turnover in the rat during performance on fixed ratio and variable interval schedules of reinforcement.
    Heffner TG; Luttinger D; Hartman JA; Seiden LS
    Brain Res; 1981 Jun; 214(1):215-8. PubMed ID: 7237162
    [No Abstract]   [Full Text] [Related]  

  • 33. Epileptic and normal neurons in monkey neocortex: a quantitative study of degree of operant control.
    Wyler AR; Finch CA; Burchiel KJ
    Brain Res; 1978 Aug; 151(2):269-81. PubMed ID: 98210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concurrent water-drinking on FI and CRF food-reinforcement schedules in the Rhesus monkey.
    Salzberg CL; Henton WW; Jordan JJ
    Psychol Rep; 1968 Jun; 22(3):1065-70. PubMed ID: 4969851
    [No Abstract]   [Full Text] [Related]  

  • 35. Synaptic inhibition in pyramidal tract neurons: membrane potential and conductance changes evoked by pyramidal tract and cortical surface stimulation.
    Renaud LP; Kelly JS; Provini L
    J Neurophysiol; 1974 Nov; 37(6):1144-55. PubMed ID: 4373546
    [No Abstract]   [Full Text] [Related]  

  • 36. Cue and reward signals carried by monkey entorhinal cortex neurons during reward schedules.
    Sugase-Miyamoto Y; Richmond BJ
    Exp Brain Res; 2007 Aug; 181(2):267-76. PubMed ID: 17396249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Reorganization of visual cortex neuronal spike flow in the cat with different delays in reinforcement].
    Volkov VF
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(3):556-9. PubMed ID: 7113458
    [No Abstract]   [Full Text] [Related]  

  • 38. Non-contingent positive and negative reinforcement schedules of superstitious behaviors.
    Bloom CM; Venard J; Harden M; Seetharaman S
    Behav Processes; 2007 May; 75(1):8-13. PubMed ID: 17353100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent developments in the study of the columnar arrangement of neurons within the motor cortex.
    Asanuma H
    Physiol Rev; 1975 Apr; 55(2):143-56. PubMed ID: 806927
    [No Abstract]   [Full Text] [Related]  

  • 40. Non-burst epileptic firing patterns of neurons in chronic epileptic foci.
    Wyler AR; Robbins CA; Klein S
    Brain Res; 1979 Jun; 169(1):173-7. PubMed ID: 110393
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.