These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11427460)

  • 1. Near-infrared spectroscopy for measuring urea in hemodialysis fluids.
    Eddy CV; Arnold MA
    Clin Chem; 2001; 47(7):1279-86. PubMed ID: 11427460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis.
    Cho DS; Olesberg JT; Flanigan MJ; Arnold MA
    Appl Spectrosc; 2008 Aug; 62(8):866-72. PubMed ID: 18702859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared spectroscopic measurement of urea in dialysate samples collected during hemodialysis treatments.
    Eddy CV; Flanigan M; Arnold MA
    Appl Spectrosc; 2003 Oct; 57(10):1230-5. PubMed ID: 14639750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online monitoring of urea concentration in dialysate with dual-beam Fourier-transform near-infrared spectroscopy.
    Snoer Jensen P; Bak J; Ladefoged S; Andersson-Engels S; Friis-Hansen L
    J Biomed Opt; 2004; 9(3):553-7. PubMed ID: 15189093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra.
    Ren M; Arnold MA
    Anal Bioanal Chem; 2007 Feb; 387(3):879-88. PubMed ID: 17200856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online measurement of urea concentration in spent dialysate during hemodialysis.
    Olesberg JT; Arnold MA; Flanigan MJ
    Clin Chem; 2004 Jan; 50(1):175-81. PubMed ID: 14709645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions.
    Chen J; Arnold MA; Small GW
    Anal Chem; 2004 Sep; 76(18):5405-13. PubMed ID: 15362899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.
    Zhang L; Small GW; Arnold MA
    Anal Chem; 2003 Nov; 75(21):5905-15. PubMed ID: 14588032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra.
    Liu L; Arnold MA
    Anal Bioanal Chem; 2009 Jan; 393(2):669-77. PubMed ID: 19009286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate calibration models for lysozyme from near-infrared transmission spectra in scattering solutions of monodisperse microspheres.
    Green CE; Wiencek JM; Arnold MA
    Anal Chem; 2002 Jul; 74(14):3392-9. PubMed ID: 12139045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of glucose concentration from near-infrared spectra using locally weighted partial least square regression.
    Malik B; Benaissa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6169-71. PubMed ID: 23367337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin.
    Alexeeva NV; Arnold MA
    J Diabetes Sci Technol; 2010 Sep; 4(5):1041-54. PubMed ID: 20920424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared spectroscopic determination of serum total proteins, albumin, globulins, and urea.
    Hall JW; Pollard A
    Clin Biochem; 1993 Dec; 26(6):483-90. PubMed ID: 8124864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity and Sensitivity of Near-Infrared Spectroscopic Sensing of β-Hydroxybutyrate, Glucose, and Urea in Ternary Aqueous Solutions.
    Ye M; Arnold MA
    Anal Chem; 2021 Apr; 93(13):5586-5595. PubMed ID: 33760590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral simulation methodology for calibration transfer of near-infrared spectra.
    Sulub Y; Small GW
    Appl Spectrosc; 2007 Apr; 61(4):406-13. PubMed ID: 17456259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line near infrared bioreactor monitoring of cell density and concentrations of glucose and lactate during insect cell cultivation.
    Qiu J; Arnold MA; Murhammer DW
    J Biotechnol; 2014 Mar; 173():106-11. PubMed ID: 24452098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the solute removal index for urea by using a partial spent dialysate collection method.
    Cheng YL; Shek CC; Wong FK; Choi KS; Chau KF; Ing TS; Li CS
    Am J Kidney Dis; 1998 Jun; 31(6):986-90. PubMed ID: 9631843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy.
    Shaw RA; Kotowich S; Mantsch HH; Leroux M
    Clin Biochem; 1996 Feb; 29(1):11-19. PubMed ID: 8929818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy.
    Amerov AK; Chen J; Small GW; Arnold MA
    Anal Chem; 2005 Jul; 77(14):4587-94. PubMed ID: 16013877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive near-infrared spectroscopic measurement of multiple analytes in undiluted samples of serum-based cell culture media.
    Rhiel M; Cohen MB; Murhammer DW; Arnold MA
    Biotechnol Bioeng; 2002 Jan; 77(1):73-82. PubMed ID: 11745175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.