BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11427889)

  • 1. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment.
    Partridge AW; Melnyk RA; Deber CM
    Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator.
    Tector M; Hartl FU
    EMBO J; 1999 Nov; 18(22):6290-8. PubMed ID: 10562541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator.
    Tan AL; Ong SA; Venkatesh B
    Arch Biochem Biophys; 2002 May; 401(2):215-22. PubMed ID: 12054472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease.
    Cheung JC; Deber CM
    Biochemistry; 2008 Feb; 47(6):1465-73. PubMed ID: 18193900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protein sequence that can encode native structure by disfavoring alternate conformations.
    Wigley WC; Corboy MJ; Cutler TD; Thibodeau PH; Oldan J; Lee MG; Rizo J; Hunt JF; Thomas PJ
    Nat Struct Biol; 2002 May; 9(5):381-8. PubMed ID: 11938353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease.
    Partridge AW; Therien AG; Deber CM
    Proteins; 2004 Mar; 54(4):648-56. PubMed ID: 14997561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E
    Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of the cystic fibrosis transmembrane regulator with CAL: structural features and molecular dynamics.
    Piserchio A; Fellows A; Madden DR; Mierke DF
    Biochemistry; 2005 Dec; 44(49):16158-66. PubMed ID: 16331976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel.
    Gené GG; Llobet A; Larriba S; de Semir D; Martínez I; Escalada A; Solsona C; Casals T; Aran JM
    Hum Mutat; 2008 May; 29(5):738-49. PubMed ID: 18306312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype.
    Clain J; Lehmann-Che J; Duguépéroux I; Arous N; Girodon E; Legendre M; Goossens M; Edelman A; de Braekeleer M; Teulon J; Fanen P
    Hum Mutat; 2005 Apr; 25(4):360-71. PubMed ID: 15776432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.