These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11428650)

  • 1. Intervention of sulfur mustard toxicity by downregulation of cell proliferation and metabolic rates.
    Ray R; Benton BJ; Anderson DR; Byers SL; Petrali JP
    J Appl Toxicol; 2000 Dec; 20 Suppl 1():S87-91. PubMed ID: 11428650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur mustard-stimulated protease: a target for antivesicant drugs.
    Ray P; Chakrabarti AK; Broomfield CA; Ray R
    J Appl Toxicol; 2002; 22(2):139-40. PubMed ID: 11920939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of apoptotic DNA fragmentation and c-jun downregulation in human myeloid leukemia cells by the permeant Ca2+ chelator BAPTA/AM.
    Grant S; Freemerman AJ; Gregory PC; Martin HA; Turner AJ; Mikkelsen R; Chelliah J; Yanovich S; Jarvis WD
    Oncol Res; 1995; 7(7-8):381-92. PubMed ID: 8747601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intracellular calcium modulation on sulfur mustard cytotoxicity in cultured human neonatal keratinocytes.
    Sawyer TW; Hamilton MG
    Toxicol In Vitro; 2000 Apr; 14(2):149-57. PubMed ID: 10793293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on K+ currents in rat cerebellar granule neurones of a membrane-permeable analogue of the calcium chelator BAPTA.
    Watkins CS; Mathie A
    Br J Pharmacol; 1996 Aug; 118(7):1772-8. PubMed ID: 8842443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.
    Jornot L; Petersen H; Junod AF
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):85-94. PubMed ID: 9742216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro.
    Tymianski M; Charlton MP; Carlen PL; Tator CH
    J Neurophysiol; 1994 Oct; 72(4):1973-92. PubMed ID: 7823112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protease in normal human epidermal keratinocytes.
    Ray P; Ali ST
    Drug Chem Toxicol; 1998 Aug; 21(3):319-27. PubMed ID: 9706464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an intracellular calcium chelator on the regulation of electrically evoked [3H]-noradrenaline release from rat hippocampal slices.
    Fredholm BB; Hu PS
    Br J Pharmacol; 1993 Jan; 108(1):126-31. PubMed ID: 8094021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses.
    Collatz MB; Rüdel R; Brinkmeier H
    Cell Calcium; 1997 Jun; 21(6):453-9. PubMed ID: 9223681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons.
    Ouanounou A; Zhang L; Tymianski M; Charlton MP; Wallace MC; Carlen PL
    Neuroscience; 1996 Nov; 75(1):99-109. PubMed ID: 8923526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelation of intracellular calcium prevents mesangial cell proliferative responsiveness.
    Whiteside C; Munk S; Zhou X; Miralem T; Templeton DM
    J Am Soc Nephrol; 1998 Jan; 9(1):14-25. PubMed ID: 9440082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators.
    Tymianski M; Spigelman I; Zhang L; Carlen PL; Tator CH; Charlton MP; Wallace MC
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):911-23. PubMed ID: 7929656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cell-permeant calcium chelators on contractility in monkey basilar artery.
    Macdonald RL; Zhang J; Marton LS; Weir B
    J Neurotrauma; 1999 Jan; 16(1):37-47. PubMed ID: 9989465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Ca2+ in H+ transport by rabbit gastric glands studied with A23187 and BAPTA, an incorporated Ca2+ chelator.
    Michelangeli F; Ruiz MC; Fernández E; Ciarrocchi A
    Biochim Biophys Acta; 1989 Jul; 983(1):82-90. PubMed ID: 2503036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of mesangial cell apoptosis and proliferation by intracellular Ca(2+) signals.
    Saleh H; Schlatter E; Lang D; Pauels HG; Heidenreich S
    Kidney Int; 2000 Nov; 58(5):1876-84. PubMed ID: 11044207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of loading with the calcium-chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) on amylase release and cellular ATP level in rat parotid cells.
    Tojyo Y; Matsumoto Y
    Biochem Pharmacol; 1990 Jun; 39(11):1775-9. PubMed ID: 1693078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of normal human keratinocytes to sulfur mustard (HD): cytokine release using a non-enzymatic detachment procedure.
    Arroyo CM; Schafer RJ; Kurt EM; Broomfield CA; Carmichael AJ
    Hum Exp Toxicol; 1999 Jan; 18(1):1-11. PubMed ID: 10025362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.