These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11429188)

  • 1. Influence of pectins on the solubility and the molar mass distribution of dehydrogenative polymers (DHPs, lignin model compounds).
    Cathala B; Monties B
    Int J Biol Macromol; 2001 Jul; 29(1):45-51. PubMed ID: 11429188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation.
    Barakat A; Winter H; Rondeau-Mouro C; Saake B; Chabbert B; Cathala B
    Planta; 2007 Jun; 226(1):267-81. PubMed ID: 17333255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reaction media concentration on the solubility and the chemical structure of lignin model compounds.
    Barakat A; Chabbert B; Cathala B
    Phytochemistry; 2007 Aug; 68(15):2118-25. PubMed ID: 17582447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterisation and water sorption properties of pectin-dehydrogenation polymer (lignin model compound) complex.
    Cathala B; Chabbert B; Joly C; Dole P; Monties B
    Phytochemistry; 2001 Jan; 56(2):195-202. PubMed ID: 11219814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of arabinoxylan-dehydrogenation polymer (synthetic lignin polymer) nanoparticles.
    Barakat A; Putaux JL; Saulnier L; Chabbert B; Cathala B
    Biomacromolecules; 2007 Apr; 8(4):1236-45. PubMed ID: 17341112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure.
    Méchin V; Baumberger S; Pollet B; Lapierre C
    Phytochemistry; 2007 Feb; 68(4):571-9. PubMed ID: 17187834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of the monolignol gamma-carbon functionality in lignin biopolymerization.
    Holmgren A; Norgren M; Zhang L; Henriksson G
    Phytochemistry; 2009 Jan; 70(1):147-55. PubMed ID: 19056096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.
    Harman-Ware AE; Happs RM; Davison BH; Davis MF
    Biotechnol Biofuels; 2017; 10():281. PubMed ID: 29213321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydrogenative polymerization of coniferyl alcohol in artificial polysaccharides matrices: effects of xylan on the polymerization.
    Li Q; Koda K; Yoshinaga A; Takabe K; Shimomura M; Hirai Y; Tamai Y; Uraki Y
    J Agric Food Chem; 2015 May; 63(18):4613-20. PubMed ID: 25775127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite.
    Touzel JP; Chabbert B; Monties B; Debeire P; Cathala B
    J Agric Food Chem; 2003 Feb; 51(4):981-6. PubMed ID: 12568559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro model assemblies to study the impact of lignin-carbohydrate interactions on the enzymatic conversion of xylan.
    Boukari I; Putaux JL; Cathala B; Barakat A; Saake B; Rémond C; O'Donohue M; Chabbert B
    Biomacromolecules; 2009 Sep; 10(9):2489-98. PubMed ID: 19655790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification.
    Lairez D; Cathala B; Monties B; Bedos-Belval F; Duran H; Gorrichon L
    Biomacromolecules; 2005; 6(2):763-74. PubMed ID: 15762640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes of lignin-carbohydrate complexes (LCCs) from Chinese quince fruits during the sequential fractionation of pectic and hemicellulosic polysaccharides.
    Wei YN; Wang CY; Fu CQ; Liu HM; Qin Z; Wang XD
    Int J Biol Macromol; 2021 Dec; 192():1256-1265. PubMed ID: 34673104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymerization of coniferyl alcohol by Mn
    Taboada-Puig R; Lú-Chau TA; Moreira MT; Feijoo G; Lema JM; Fagerstedt K; Ohra-Aho T; Liitiä T; Heikkinen H; Ropponen J; Tamminen T
    Biotechnol Prog; 2018 Jan; 34(1):81-90. PubMed ID: 28960884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols.
    Kim H; Rencoret J; Elder TJ; Del Río JC; Ralph J
    Sci Adv; 2023 Mar; 9(10):eade5519. PubMed ID: 36888720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-wall proteins from Sitka spruce xylem are selectively insolubilised during formation of dehydrogenation polymers of coniferyl alcohol.
    McDougall GJ
    Phytochemistry; 2001 May; 57(2):157-63. PubMed ID: 11382230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot preparation of zwitterion-type lignin polymers.
    Guo Y; Gao W; Kong F; Fatehi P
    Int J Biol Macromol; 2019 Nov; 140():429-440. PubMed ID: 31425764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lignin content on a GH11 endoxylanase acting on glucuronoarabinoxylan-lignin nanocomposites.
    Boukari I; Rémond C; O'Donohue M; Chabbert B
    Carbohydr Polym; 2012 Jun; 89(2):423-31. PubMed ID: 24750739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growing of Artificial Lignin on Cellulose Ferulate Thin Films.
    Elschner T; Adam J; Lesny H; Joseph Y; Fischer S
    Biomacromolecules; 2022 May; 23(5):2089-2097. PubMed ID: 35438964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hemicelluloses on dehydrogenative polymerization of monolignols with cationic cell wall-bound peroxidase.
    Lyu Y; Suzuki S; Nagano H; Shigetomi K; Tamai Y; Tsutsumi Y; Uraki Y
    Carbohydr Polym; 2023 Feb; 301(Pt A):120305. PubMed ID: 36436868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.