BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1143004)

  • 1. 5-Methyltetrahydrofolate aromatic alkylamine N-methyltransferase: an artefact of 5,10-methylenetetrahydrofolate reductase activity.
    Taylor RT; Hanna ML
    Life Sci; 1975 Jul; 17(1):111-9. PubMed ID: 1143004
    [No Abstract]   [Full Text] [Related]  

  • 2. Folate-dependent 1-carbon transfer to biogenic amines mediated by methylenetetrahydrofolate reductase.
    Pearson AG; Turner AJ
    Nature; 1975 Nov; 258(5531):173-4. PubMed ID: 1186901
    [No Abstract]   [Full Text] [Related]  

  • 3. Stimulation of brain aromatic alkylamine N-methyltransferase activity by FAD and methylcobalamin.
    Hsu LL; Mandel AJ
    Life Sci; 1974 Mar; 14(5):877-85. PubMed ID: 4364039
    [No Abstract]   [Full Text] [Related]  

  • 4. Multiple N-methyltransferases for aromatic alkylamines in brain.
    Hsu LL; Mandell AJ
    Adv Biochem Psychopharmacol; 1974; 11(0):75-84. PubMed ID: 4845690
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase.
    Matthews RG; Kaufman S
    J Biol Chem; 1980 Jul; 255(13):6014-7. PubMed ID: 6967065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of methionine synthase: further characterization of flavoprotein system.
    Fujii K; Galivan JH; Huennekens FM
    Arch Biochem Biophys; 1977 Jan; 178(2):662-70. PubMed ID: 13738
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of 1,2,3,4,-tetrahydro-beta-carboline and methylene-beta-phenylethylimine from 5-methyltetrahydrofolate and amines in tissues from developing rat brain.
    Hsu LL
    Life Sci; 1976 Aug; 19(4):493-6. PubMed ID: 957885
    [No Abstract]   [Full Text] [Related]  

  • 8. Folate metabolism in filariae: enzymes associated with 5,10-methylenetetrahydrofolate.
    Jaffe JJ; Chrin LR
    J Parasitol; 1980 Feb; 66(1):53-8. PubMed ID: 6988563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro studies of 5, 10-methylenetetrahydrofolate reductase: inhibition by folate derivatives, folate antagonists, and monoamine derivatives.
    Hollinger JL; Hommes OR; van de Wiel TJ; Kok JC; Jansen MJ
    J Neurochem; 1982 Mar; 38(3):638-42. PubMed ID: 6977016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formyl-methenyl-methylenetetrahydrofolate synthetase from rabbit liver (combined). Evidence for a single site in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate.
    Schirch L
    Arch Biochem Biophys; 1978 Aug; 189(2):283-90. PubMed ID: 30404
    [No Abstract]   [Full Text] [Related]  

  • 11. Substrate flux through methylenetetrahydrofolate dehydrogenase: predicted effects of the concentration of methylenetetrahydrofolate on its partitioning into pathways leading to nucleotide biosynthesis or methionine regeneration.
    Green JM; MacKenzie RE; Matthews RG
    Biochemistry; 1988 Oct; 27(21):8014-22. PubMed ID: 3266075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioenzymatic assay for reductive catalysis of N(5)N(10)-methylenetetrahydrofolate by methylenetetrahydrofolate reductase.
    Sobti P; Rothenberg SP; Quadros EV
    J Biochem Biophys Methods; 2000 Nov; 46(1-2):11-20. PubMed ID: 11086190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylene-beta-phenylethylimine formation from 5-methyltetrahydrofolic acid and beta-phenylethylamine.
    Hsu LL; Mandell AJ
    Life Sci; 1975 Aug; 17(3):387-96. PubMed ID: 1160508
    [No Abstract]   [Full Text] [Related]  

  • 14. Methionine metabolism in mammals: regulation of methylenetetrahydrofolate reductase content of rat tissues.
    Finkelstein JD; Martin JJ; Kyle WE; Harris BJ
    Arch Biochem Biophys; 1978 Nov; 191(1):153-60. PubMed ID: 736559
    [No Abstract]   [Full Text] [Related]  

  • 15. Multiple N-methyltransferases for aromatic alkylamines in brain.
    Hsu LL; Mandell AJ
    Life Sci; 1973 Oct; 13(7):847-58. PubMed ID: 4766261
    [No Abstract]   [Full Text] [Related]  

  • 16. N-methylation of indolealkylamines in the brain with a new methyl donor.
    Leysen J; Laduron P
    Adv Biochem Psychopharmacol; 1974; 11(0):65-74. PubMed ID: 4845689
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of nitrous oxide-induced inactivation of vitamin B12 on the activity of formyl-methenyl-methylenetetrahydrofolate synthetase, methylene-tetrahydrofolate reductase and formiminotetrahydrofolate transferase.
    Perry J; Deacon R; Lumb M; Chanarin I
    Biochem Biophys Res Commun; 1980 Dec; 97(4):1329-33. PubMed ID: 6971097
    [No Abstract]   [Full Text] [Related]  

  • 18. The mechanism of 1- and 2-electron transfers catalyzed by reduced triphosphopyridine nucleotide-cytochrome c reductase.
    Masters BS; Bilimoria MH; Kamin H; Gibson QH
    J Biol Chem; 1965 Oct; 240(10):4081-8. PubMed ID: 4378860
    [No Abstract]   [Full Text] [Related]  

  • 19. N5,10-methylenetetrahydrofolate reductase activity in autopsied brain parts of chronic schizophrenics and controls and in vitro tryptoline formation.
    Elliott GR; Sutherland K; Erdelyi E; Ciaranello RD; Barchas JD; Wyatt RJ
    Biol Psychiatry; 1978 Dec; 13(6):695-708. PubMed ID: 737257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate.
    Dev IK; Harvey RJ
    J Biol Chem; 1978 Jun; 253(12):4245-53. PubMed ID: 350870
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.