These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11430515)

  • 1. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of radionuclides released into a stable planetary boundary layer using a Monte Carlo model.
    Basit A; Shoaib Raza S; Irfan N
    J Radiol Prot; 2006 Dec; 26(4):375-87. PubMed ID: 17146122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of immersion doses from external exposure to a plume of radioactive material.
    Raza S; Avila R
    Health Phys; 2005 Sep; 89(3):247-54. PubMed ID: 16096500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-Ray Dose From an Overhead Plume.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 May; 112(5):445-450. PubMed ID: 28350698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.
    Tsiouri V; Kovalets I; Andronopoulos S; Bartzis JG
    Radiat Prot Dosimetry; 2012 Jan; 148(1):34-44. PubMed ID: 21349880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between the predictions of a Gaussian plume model and a Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides.
    Lutman ER; Jones SR; Hill RA; McDonald P; Lambers B
    J Environ Radioact; 2004; 75(3):339-55. PubMed ID: 15193798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.
    Eslinger PW; Bowyer TW; Cameron IM; Hayes JC; Miley HS
    J Environ Radioact; 2015 Oct; 148():123-9. PubMed ID: 26151301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable plume rise in a shear layer.
    Overcamp TJ
    J Air Waste Manag Assoc; 2007 Mar; 57(3):328-31. PubMed ID: 17385599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gaussian-plume based Monte Carlo method for calculating radiation dose in the near field of buildings.
    Gallacher DJ; Robins AG; Hayden P
    J Radiol Prot; 2024 Jun; 44(2):. PubMed ID: 38834053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of the PRIME plume rise and building downwash model.
    Schulman LL; Strimaitis DG; Scire JS
    J Air Waste Manag Assoc; 2000 Mar; 50(3):378-90. PubMed ID: 10734710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of radioactive plume characteristics along Chernobyl's Western Trace.
    Chesser RK; Bondarkov M; Baker RJ; Wickliffe JK; Rodgers BE
    J Environ Radioact; 2004; 71(2):147-57. PubMed ID: 14748353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective dose conversion coefficient for gamma ray exposure from an overhead plume.
    Dey R; Patni HK; Deo Singh K; Kulkarni MS; Anand S
    Phys Med Biol; 2019 Aug; 64(15):155001. PubMed ID: 31239410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.
    Vervecken L; Camps J; Meyers J
    J Radiol Prot; 2015 Mar; 35(1):165-78. PubMed ID: 25634888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced integral solutions for gamma absorbed dose from Gaussian plume.
    Gorshkov VE; Karmazin IP; Tarasov VI
    Health Phys; 1995 Aug; 69(2):210-8. PubMed ID: 7622367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meteorological modeling of arrival and deposition of fallout at intermediate distances downwind of the Nevada Test Site.
    Cederwall RT; Peterson KR
    Health Phys; 1990 Nov; 59(5):593-601. PubMed ID: 2211118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-integrated thyroid dose for accidental releases from Pakistan Research Reactor-1.
    Raza SS; Iqbal M; Salahuddin A; Avila R; Pervez S
    J Radiol Prot; 2004 Sep; 24(3):307-14. PubMed ID: 15511022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating sulfur dioxide plume dispersion and subsequent deposition downwind from a stationary point source: a model.
    Bourque CP; Arp PA
    Environ Pollut; 1996; 91(3):363-80. PubMed ID: 15091430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.