These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 11430755)

  • 1. MUNIN: a new approach to multi-dimensional NMR spectra interpretation.
    Orekhov VY; Ibraghimov IV; Billeter M
    J Biomol NMR; 2001 May; 20(1):49-60. PubMed ID: 11430755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-way decomposition of a complete 3D 15N-NOESY-HSQC.
    Gutmanas A; Jarvoll P; Orekhov VY; Billeter M
    J Biomol NMR; 2002 Nov; 24(3):191-201. PubMed ID: 12522307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data.
    Korzhneva DM; Ibraghimov IV; Billeter M; Orekhov VY
    J Biomol NMR; 2001 Nov; 21(3):263-8. PubMed ID: 11775742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS.
    Herrmann T; Güntert P; Wüthrich K
    J Biomol NMR; 2002 Nov; 24(3):171-89. PubMed ID: 12522306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak picking NMR spectral data using non-negative matrix factorization.
    Tikole S; Jaravine V; Rogov V; Dötsch V; Güntert P
    BMC Bioinformatics; 2014 Feb; 15():46. PubMed ID: 24511909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition.
    Luan T; Jaravine V; Yee A; Arrowsmith CH; Orekhov VY
    J Biomol NMR; 2005 Sep; 33(1):1-14. PubMed ID: 16222553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.
    Hassanieh H; Mayzel M; Shi L; Katabi D; Orekhov VY
    J Biomol NMR; 2015 Sep; 63(1):9-19. PubMed ID: 26123316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar Fourier transforms of radially sampled NMR data.
    Coggins BE; Zhou P
    J Magn Reson; 2006 Sep; 182(1):84-95. PubMed ID: 16820311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra.
    De Sanctis S; Malloni WM; Kremer W; Tomé AM; Lang EW; Neidig KP; Kalbitzer HR
    J Magn Reson; 2011 Jun; 210(2):177-83. PubMed ID: 21459640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets.
    Kazimierczuk K; Koźmiński W; Zhukov I
    J Magn Reson; 2006 Apr; 179(2):323-8. PubMed ID: 16488634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer vision-based automated peak picking applied to protein NMR spectra.
    Klukowski P; Walczak MJ; Gonczarek A; Boudet J; Wider G
    Bioinformatics; 2015 Sep; 31(18):2981-8. PubMed ID: 25995228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonuniform Sampling for NMR Spectroscopy.
    Robson S; Arthanari H; Hyberts SG; Wagner G
    Methods Enzymol; 2019; 614():263-291. PubMed ID: 30611427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated solvent artifact removal and base plane correction of multidimensional NMR protein spectra by AUREMOL-SSA.
    Malloni WM; De Sanctis S; Tomé AM; Lang EW; Munte CE; Neidig KP; Kalbitzer HR
    J Biomol NMR; 2010 Jun; 47(2):101-11. PubMed ID: 20414700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets.
    Stanek J; Koźmiński W
    J Biomol NMR; 2010 May; 47(1):65-77. PubMed ID: 20372976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEnD NMR: sensitivity enhanced n-dimensional NMR.
    Gledhill JM; Wand AJ
    J Magn Reson; 2010 Feb; 202(2):250-8. PubMed ID: 20004602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.
    Hansen DF
    J Biomol NMR; 2019 Nov; 73(10-11):577-585. PubMed ID: 31292846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination.
    Shen Y; Atreya HS; Liu G; Szyperski T
    J Am Chem Soc; 2005 Jun; 127(25):9085-99. PubMed ID: 15969587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction.
    Marion D
    J Biomol NMR; 2006 Sep; 36(1):45-54. PubMed ID: 16964531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical model fitting approaches to the direct extraction of NMR parameters simultaneously from all dimensions of multidimensional NMR spectra.
    Chylla RA; Volkman BF; Markley JL
    J Biomol NMR; 1998 Aug; 12(2):277-97. PubMed ID: 9751999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.