These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11430755)

  • 41. Theory of covariance nuclear magnetic resonance spectroscopy.
    Brüschweiler R
    J Chem Phys; 2004 Jul; 121(1):409-14. PubMed ID: 15260561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-uniform frequency domain for optimal exploitation of non-uniform sampling.
    Kazimierczuk K; Zawadzka-Kazimierczuk A; Koźmiński W
    J Magn Reson; 2010 Aug; 205(2):286-92. PubMed ID: 20547466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
    Cornilescu G; Bahrami A; Tonelli M; Markley JL; Eghbalnia HR
    J Biomol NMR; 2007 Aug; 38(4):341-51. PubMed ID: 17610130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data.
    Ying J; Delaglio F; Torchia DA; Bax A
    J Biomol NMR; 2017 Jun; 68(2):101-118. PubMed ID: 27866371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation.
    Iwahara J; Jung YS; Clore GM
    J Am Chem Soc; 2007 Mar; 129(10):2971-80. PubMed ID: 17300195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonuniform sampling of hypercomplex multidimensional NMR experiments: Dimensionality, quadrature phase and randomization.
    Schuyler AD; Maciejewski MW; Stern AS; Hoch JC
    J Magn Reson; 2015 May; 254():121-30. PubMed ID: 25899289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assignment of protein NMR spectra based on projections, multi-way decomposition and a fast correlation approach.
    Staykova DK; Fredriksson J; Bermel W; Billeter M
    J Biomol NMR; 2008 Oct; 42(2):87-97. PubMed ID: 18777098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fundamental and practical aspects of machine learning for the peak picking of biomolecular NMR spectra.
    Li DW; Hansen AL; Bruschweiler-Li L; Yuan C; Brüschweiler R
    J Biomol NMR; 2022 Jun; 76(3):49-57. PubMed ID: 35389128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.
    Zhang Z; Huang Y; Smith PE; Wang K; Cai S; Chen Z
    J Magn Reson; 2014 May; 242():49-56. PubMed ID: 24607822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theory of mirrored time domain sampling for NMR spectroscopy.
    Ghosh A; Wu Y; He Y; Szyperski T
    J Magn Reson; 2011 Dec; 213(1):46-57. PubMed ID: 21974999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Line shape considerations in ultrafast 2D NMR.
    Shapira B; Lupulescu A; Shrot Y; Frydman L
    J Magn Reson; 2004 Feb; 166(2):152-63. PubMed ID: 14729027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parallel receivers and sparse sampling in multidimensional NMR.
    Kupče Ē; Freeman R
    J Magn Reson; 2011 Dec; 213(1):1-13. PubMed ID: 21924931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.
    Cannistraci CV; Abbas A; Gao X
    Sci Rep; 2015 Jan; 5():8017. PubMed ID: 25619991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition.
    Tugarinov V; Kay LE; Ibraghimov I; Orekhov VY
    J Am Chem Soc; 2005 Mar; 127(8):2767-75. PubMed ID: 15725035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resolution of the 1H-1H NOE spectrum of RNA into three dimensions using 15N-1H two-bond couplings.
    Hoffman DW
    J Biomol NMR; 2000 Feb; 16(2):165-9. PubMed ID: 10723995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Narrow peaks and high dimensionalities: exploiting the advantages of random sampling.
    Kazimierczuk K; Zawadzka A; Koźmiński W
    J Magn Reson; 2009 Apr; 197(2):219-28. PubMed ID: 19185522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data.
    Ueda T; Yoshiura C; Matsumoto M; Kofuku Y; Okude J; Kondo K; Shiraishi Y; Takeuchi K; Shimada I
    J Biomol NMR; 2015 May; 62(1):31-41. PubMed ID: 25677224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of intermolecular NOE interactions in large protein complexes.
    Anglister J; Srivastava G; Naider F
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information.
    Kim S; Szyperski T
    J Am Chem Soc; 2003 Feb; 125(5):1385-93. PubMed ID: 12553842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.