BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11430979)

  • 1. Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L.
    Magel EA; Hillinger C; Wagner T; Höll W
    Phytochemistry; 2001 Aug; 57(7):1061-8. PubMed ID: 11430979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():43-51. PubMed ID: 28108222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response.
    Fahrendorf T; Ni W; Shorrosh BS; Dixon RA
    Plant Mol Biol; 1995 Aug; 28(5):885-900. PubMed ID: 7640360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803.
    Ito S; Osanai T
    Biochem J; 2020 Apr; 477(7):1309-1321. PubMed ID: 32227111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway.
    Reyes JS; Fuentes-Lemus E; Figueroa JD; Rojas J; Fierro A; Arenas F; Hägglund PM; Davies MJ; López-Alarcón C
    Sci Rep; 2022 Dec; 12(1):21191. PubMed ID: 36476946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple forms of Pseudomonas multivorans glucose-6-phosphate and 6-phosphogluconate dehydrogenases: differences in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate.
    Lessie TG; Wyk JC
    J Bacteriol; 1972 Jun; 110(3):1107-17. PubMed ID: 4402279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation.
    de Freitas-Silva L; Rodríguez-Ruiz M; Houmani H; da Silva LC; Palma JM; Corpas FJ
    J Plant Physiol; 2017 Nov; 218():196-205. PubMed ID: 28888161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.
    Corpas FJ; Barroso JB; Sandalio LM; Distefano S; Palma JM; Lupiáñez JA; Del Río LA
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):777-84. PubMed ID: 9480890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension.
    Hashimoto R; Gupte S
    Adv Exp Med Biol; 2017; 967():47-55. PubMed ID: 29047080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of series E and F prostaglandins on the reaction of the pentosephosphate pathway of carbohydrate metabolism in isolated perfused rat organs].
    Kudriavtseva GV; Makarov SA; Sekretareva EV
    Biokhimiia; 1984 Nov; 49(11):1847-53. PubMed ID: 6596960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of prostaglandin F 2 alpha on the activity of NADP-dependent dehydrogenases].
    Kudriavtseva GV; Tsarenko EP
    Biokhimiia; 1980 Apr; 45(4):594-600. PubMed ID: 7189671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectors of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver.
    Gonzalez AM; Lagunas R
    Mol Cell Biochem; 1977 Oct; 17(3):147-9. PubMed ID: 22033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.