These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1143116)

  • 1. Long-term in vivo behavior of a platinum endoauricular-magnesium hybrid battery.
    Fontenier G; Mourot M; Freshard R
    Med Instrum; 1975; 9(4):171-6. PubMed ID: 1143116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating evolution with an implantable biological battery.
    Fontenier G; Mourot M
    Biomed Eng; 1976 Aug; 11(8):273-7. PubMed ID: 963167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of experimentation with a platinum-magnesium bioelectric battery.
    Fontenier G; Freschard R; Mourot M
    Biomater Med Devices Artif Organs; 1975; 3(1):25-45. PubMed ID: 1139023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimentation with a biogalvanic battery as a cardiac stimulator (author's transl)].
    Mourot M; Fontenier G; Freschard R; Bleser F; Benichoux R
    Ann Chir Thorac Cardiovasc; 1975 Apr; 14(2):113-20. PubMed ID: 1147563
    [No Abstract]   [Full Text] [Related]  

  • 5. Implanted silver-silver chloride magnesium power sources.
    Cassel J; Satinsky VP; Eibling D; Greenberg R; Salkind A
    Med Instrum; 1973; 7(3):176-9. PubMed ID: 4583713
    [No Abstract]   [Full Text] [Related]  

  • 6. High power inductive coupling for the establishment of a RF field in tissue for diode stimulation.
    Schuder JC; Gold JH; Stoeckie H; Holland JA
    Trans Am Soc Artif Intern Organs; 1975; 21():532-9. PubMed ID: 1146028
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.
    Yang S; Jia B; Liu H
    Bioresour Technol; 2009 Feb; 100(3):1197-202. PubMed ID: 18790635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles.
    Choi Y; Wang G; Nayfeh MH; Yau ST
    Biosens Bioelectron; 2009 Jun; 24(10):3103-7. PubMed ID: 19423331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The current status of cardiac pacing.
    Roy OZ
    CRC Crit Rev Bioeng; 1975 Jun; 2(3):259-327. PubMed ID: 1095301
    [No Abstract]   [Full Text] [Related]  

  • 10. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term performance of transvenous, steroid-eluting, high impedance, passive-fixation ventricular pacing leads.
    Yeh KH; Wang CC; Wen MS; Chou CC; Yeh SJ; Wu D
    Pacing Clin Electrophysiol; 2004 Oct; 27(10):1399-404. PubMed ID: 15511249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the corrosion in vitro and in vivo of magnesium amodes involved in an implantable bioelectric battery.
    Fontenier G; Freschard R; Mourot M
    Med Biol Eng; 1975 Sep; 13(5):683-9. PubMed ID: 1186330
    [No Abstract]   [Full Text] [Related]  

  • 13. Technological progress in pacemaker design: hermetic sealing.
    Buffet J
    Med Prog Technol; 1975 Dec; 3(3):133-42. PubMed ID: 1214773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Variation of the oxide layer of a Domal magnesium anode used in an implantable bioelectric battery].
    Fontenier G; Burnel D
    C R Acad Hebd Seances Acad Sci D; 1974 Jul; 279(2):203-6. PubMed ID: 4217222
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrolytic phenomena and massive gas generation around pacemaker electrodes. Clinical presentation of an unusual pacing failure.
    Di Luzio V; Curzi G; Capestro F; Boccanelli A; Renzi R
    Eur J Cardiol; 1975 Dec; 3(4):297-305. PubMed ID: 1193114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chronic stimulation thresholds using carbon and platinum electrodes].
    Goicolea A; Chicote R; Adoue P; Gómez P; García-Cosío F
    Rev Esp Cardiol; 1990 Feb; 43(2):80-3. PubMed ID: 2326537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of irradiation on the components of implantable pacemakers.
    Kawamura S; Ono S; Kuga N; Shiba T; Fujimoto H; Toyoshima T; Hyodo K; Hirose T; Matoba M
    Igaku Butsuri; 2003; 23(1):73-80. PubMed ID: 12832868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of implanted biogalvanic pacemakers.
    Cywinski JK; Hahn AW; Nichols MF; Easley JR
    Pacing Clin Electrophysiol; 1978 Jan; 1(1):117-25. PubMed ID: 83607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ventricular Autocapture function in increasing longevity of DDDR pacemakers: a prospective study.
    Boriani G; Rusconi L; Biffi M; Pavia L; Sassara M; Malfitano D; Bongiorni MG; Padeletti L; Filice I; Sanfelici D; Maffei P; Vicentini A; Branzi A
    Europace; 2006 Mar; 8(3):216-20. PubMed ID: 16627443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse amplitude adjustment provides immediate pacemaker longevity gain.
    Zlatanovic N; Kedev S; Gjorgov N; Miletic B; Georgiev A; Kovacevic D; Trajkov I; Kaev M; Borozanov V; Boskov V
    Anadolu Kardiyol Derg; 2007 Jul; 7 Suppl 1():216-8. PubMed ID: 17584729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.