These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 11431348)

  • 1. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells.
    Dai Y; Yu C; Singh V; Tang L; Wang Z; McInistry R; Dent P; Grant S
    Cancer Res; 2001 Jul; 61(13):5106-15. PubMed ID: 11431348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells.
    Yu C; Krystal G; Varticovksi L; McKinstry R; Rahmani M; Dent P; Grant S
    Cancer Res; 2002 Jan; 62(1):188-99. PubMed ID: 11782377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coadministration of UCN-01 with MEK1/2 inhibitors potently induces apoptosis in BCR/ABL+ leukemia cells sensitive and resistant to ST1571.
    Yu C; Dai Y; Dent P; Grant S
    Cancer Biol Ther; 2002; 1(6):674-82. PubMed ID: 12642693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK.
    Dai Y; Rahmani M; Pei XY; Khanna P; Han SI; Mitchell C; Dent P; Grant S
    Blood; 2005 Feb; 105(4):1706-16. PubMed ID: 15494423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway.
    Yu C; Wang S; Dent P; Grant S
    Mol Pharmacol; 2001 Jul; 60(1):143-54. PubMed ID: 11408609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism.
    Dai Y; Landowski TH; Rosen ST; Dent P; Grant S
    Blood; 2002 Nov; 100(9):3333-43. PubMed ID: 12384435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process.
    Yu C; Rahmani M; Dai Y; Conrad D; Krystal G; Dent P; Grant S
    Cancer Res; 2003 Apr; 63(8):1822-33. PubMed ID: 12702569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells.
    Maggio SC; Rosato RR; Kramer LB; Dai Y; Rahmani M; Paik DS; Czarnik AC; Payne SG; Spiegel S; Grant S
    Cancer Res; 2004 Apr; 64(7):2590-600. PubMed ID: 15059916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways.
    Jia W; Yu C; Rahmani M; Krystal G; Sausville EA; Dent P; Grant S
    Blood; 2003 Sep; 102(5):1824-32. PubMed ID: 12738674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways.
    Hahn M; Li W; Yu C; Rahmani M; Dent P; Grant S
    Mol Cancer Ther; 2005 Mar; 4(3):457-70. PubMed ID: 15767555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes mitochondrial dysfunction and apoptosis induced by 7-hydroxystaurosporine and mitogen-activated protein kinase kinase inhibitors in human leukemia cells that ectopically express Bcl-2 and Bcl-xL.
    Dai Y; Dent P; Grant S
    Mol Pharmacol; 2003 Dec; 64(6):1402-9. PubMed ID: 14645670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process.
    Dai Y; Rahmani M; Grant S
    Oncogene; 2003 Oct; 22(46):7108-22. PubMed ID: 14562039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of MEK1/2 interact with UCN-01 to induce apoptosis and reduce colony formation in mammary and prostate carcinoma cells.
    McKinstry R; Qiao L; Yacoub A; Dai Y; Decker R; Holt S; Hagan MP; Grant S; Dent P
    Cancer Biol Ther; 2002; 1(3):243-53. PubMed ID: 12432271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade.
    Vrana JA; Grant S
    Blood; 2001 Apr; 97(7):2105-14. PubMed ID: 11264178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells.
    Cartee L; Wang Z; Decker RH; Chellappan SP; Fusaro G; Hirsch KG; Sankala HM; Dent P; Grant S
    Cancer Res; 2001 Mar; 61(6):2583-91. PubMed ID: 11289135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species.
    Rahmani M; Reese E; Dai Y; Bauer C; Payne SG; Dent P; Spiegel S; Grant S
    Cancer Res; 2005 Mar; 65(6):2422-32. PubMed ID: 15781658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells.
    Yu C; Rahmani M; Almenara J; Subler M; Krystal G; Conrad D; Varticovski L; Dent P; Grant S
    Cancer Res; 2003 May; 63(9):2118-26. PubMed ID: 12727828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells.
    Rahmani M; Yu C; Dai Y; Reese E; Ahmed W; Dent P; Grant S
    Cancer Res; 2003 Dec; 63(23):8420-7. PubMed ID: 14679005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib.
    Yu C; Rahmani M; Dent P; Grant S
    Exp Cell Res; 2004 May; 295(2):555-66. PubMed ID: 15093752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21(CIP1/WAF1) induction rather than AKT inhibition.
    Rahmani M; Yu C; Reese E; Ahmed W; Hirsch K; Dent P; Grant S
    Oncogene; 2003 Sep; 22(40):6231-42. PubMed ID: 13679862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.