These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 11431560)
1. Superconductivity in 4 angstrom single-walled carbon nanotubes. Tang ZK; Zhang L; Wang N; Zhang XX; Wen GH; Li GD; Wang JN; Chan CT; Sheng P Science; 2001 Jun; 292(5526):2462-5. PubMed ID: 11431560 [TBL] [Abstract][Full Text] [Related]
2. Superconductivity in 4-Angstrom carbon nanotubes--a short review. Wang Z; Shi W; Lortz R; Sheng P Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840 [TBL] [Abstract][Full Text] [Related]
3. Electron transport in very clean, as-grown suspended carbon nanotubes. Cao J; Wang Q; Dai H Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240 [TBL] [Abstract][Full Text] [Related]
4. Quantum supercurrent transistors in carbon nanotubes. Jarillo-Herrero P; van Dam JA; Kouwenhoven LP Nature; 2006 Feb; 439(7079):953-6. PubMed ID: 16495994 [TBL] [Abstract][Full Text] [Related]
5. Single-wall carbon nanotubes and peapods investigated by EPR. Corzilius B; Dinse KP; Hata K Phys Chem Chem Phys; 2007 Dec; 9(46):6063-72. PubMed ID: 18167581 [TBL] [Abstract][Full Text] [Related]
6. Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Johnston DE; Islam MF; Yodh AG; Johnson AT Nat Mater; 2005 Aug; 4(8):589-92. PubMed ID: 16030521 [TBL] [Abstract][Full Text] [Related]
7. Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations. Zhang RQ; Lee HL; Li WK; Teo BK J Phys Chem B; 2005 May; 109(18):8605-12. PubMed ID: 16852018 [TBL] [Abstract][Full Text] [Related]
8. Inhomogeneous superconductivity in organic conductors: the role of disorder and magnetic field. Haddad S; Charfi-Kaddour S; Pouget JP J Phys Condens Matter; 2011 Nov; 23(46):464205. PubMed ID: 22052841 [TBL] [Abstract][Full Text] [Related]
9. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields. Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259 [TBL] [Abstract][Full Text] [Related]
16. On the origin of preferential growth of semiconducting single-walled carbon nanotubes. Li Y; Peng S; Mann D; Cao J; Tu R; Cho KJ; Dai H J Phys Chem B; 2005 Apr; 109(15):6968-71. PubMed ID: 16851791 [TBL] [Abstract][Full Text] [Related]
17. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Gao B; Jiang J; Wu Z; Luo Y J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072 [TBL] [Abstract][Full Text] [Related]
18. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes. Zurek E; Autschbach J J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306 [TBL] [Abstract][Full Text] [Related]
19. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. Skoulidas AI; Sholl DS; Johnson JK J Chem Phys; 2006 Feb; 124(5):054708. PubMed ID: 16468902 [TBL] [Abstract][Full Text] [Related]
20. Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled carbon nanotubes. Ma YZ; Valkunas L; Bachilo SM; Fleming GR Phys Chem Chem Phys; 2006 Dec; 8(48):5689-93. PubMed ID: 17149490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]