BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 11432552)

  • 1. Kinetic analysis of the bacterial reduction of goethite.
    Liu C; Kota S; Zachara JM; Fredrickson JK; Brinkman CK
    Environ Sci Technol; 2001 Jun; 35(12):2482-90. PubMed ID: 11432552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of microbial reduction of Fe(III) in nontronite.
    Jaisi DP; Dong H; Liu C
    Environ Sci Technol; 2007 Apr; 41(7):2437-44. PubMed ID: 17438797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
    Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM
    Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes mediating nano α-FeOOH reduction by Shewanella putrefaciens CN32 to enhance tetrabromobisphenol A removal.
    Li H; Cao W; Wang W; Huang Y; Xiang M; Wang C; Chen S; Si R; Huang M
    Sci Total Environ; 2021 Jul; 777():146183. PubMed ID: 33689900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (alpha-FeOOH).
    Watkins R; Weiss D; Dubbin W; Peel K; Coles B; Arnold T
    J Colloid Interface Sci; 2006 Nov; 303(2):639-46. PubMed ID: 16989849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite.
    Powell BA; Fjeld RA; Kaplan DI; Coates JT; Serkiz SM
    Environ Sci Technol; 2005 Apr; 39(7):2107-14. PubMed ID: 15871244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface.
    Dong Y; Sanford RA; Boyanov MI; Kemner KM; Flynn TM; O'Loughlin EJ; Chang YJ; Locke RA; Weber JR; Egan SM; Mackie RI; Cann I; Fouke BW
    Appl Environ Microbiol; 2016 Nov; 82(21):6440-6453. PubMed ID: 27565620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sediment bioreduction and reoxidation on uranium sorption.
    Liu C; Zachara JM; Zhong L; Kukkadupa R; Szecsody JE; Kennedy DW
    Environ Sci Technol; 2005 Jun; 39(11):4125-33. PubMed ID: 15984791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.
    Munagapati VS; Kim DS
    Ecotoxicol Environ Saf; 2017 Jul; 141():226-234. PubMed ID: 28349874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH).
    Amstaetter K; Borch T; Larese-Casanova P; Kappler A
    Environ Sci Technol; 2010 Jan; 44(1):102-8. PubMed ID: 20039739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
    Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y
    Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Zwitterionic buffers on sorption of ferrous iron at goethite and its oxidation by CCl4.
    Buchholz A; Laskov C; Haderlein SB
    Environ Sci Technol; 2011 Apr; 45(8):3355-60. PubMed ID: 21417370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDDS enhanced Shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride.
    Zhou LY; Chen S; Li H; Guo S; Liu YD; Yang J
    Chemosphere; 2018 May; 198():556-564. PubMed ID: 29422245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Jan; 38(1):260-8. PubMed ID: 14740745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.
    Baik MH; Lee SY; Jeong J
    J Environ Radioact; 2013 Dec; 126():209-15. PubMed ID: 24056049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.