These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Non-haem iron-containing oxygenases involved in the microbial biodegradation of aromatic hydrocarbons. Coulter ED; Ballou DP Essays Biochem; 1999; 34():31-49. PubMed ID: 10730187 [TBL] [Abstract][Full Text] [Related]
7. Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor. Guieysse B; Bernhoft I; Andersson BE; Henrysson T; Olsson S; Mattiasson B Appl Microbiol Biotechnol; 2000 Dec; 54(6):826-31. PubMed ID: 11152076 [TBL] [Abstract][Full Text] [Related]
8. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria. Ladino-Orjuela G; Gomes E; da Silva R; Salt C; Parsons JR Rev Environ Contam Toxicol; 2016; 237():105-21. PubMed ID: 26613990 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Cao B; Nagarajan K; Loh KC Appl Microbiol Biotechnol; 2009 Nov; 85(2):207-28. PubMed ID: 19730850 [TBL] [Abstract][Full Text] [Related]
10. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Molina M; Araujo R; Hodson RE Can J Microbiol; 1999 Jun; 45(6):520-9. PubMed ID: 10453479 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic biodegradation of aromatic compounds. Jothimani P; Kalaichelvan G; Bhaskaran A; Selvaseelan DA; Ramasamy K Indian J Exp Biol; 2003 Sep; 41(9):1046-67. PubMed ID: 15242297 [TBL] [Abstract][Full Text] [Related]
12. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. Chen YD; Barker JF; Gui L J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687 [TBL] [Abstract][Full Text] [Related]
13. Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc amended soil. Wong KW; Toh BA; Ting YP; Obbard JP Lett Appl Microbiol; 2005; 40(1):50-5. PubMed ID: 15613002 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyquinol pathway for microbial degradation of halogenated aromatic compounds. Travkin VM; Solyanikova IP; Golovleva LA J Environ Sci Health B; 2006; 41(8):1361-82. PubMed ID: 17090498 [TBL] [Abstract][Full Text] [Related]
15. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Gibson J; S Harwood C Annu Rev Microbiol; 2002; 56():345-69. PubMed ID: 12142480 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Gilewicz M; Ni'matuzahroh ; Nadalig T; Budzinski H; Doumenq P; Michotey V; Bertrand JC Appl Microbiol Biotechnol; 1997 Oct; 48(4):528-33. PubMed ID: 9445537 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of central intermediate compounds produced from biodegradation of aromatic compounds. Cinar O Bioprocess Biosyst Eng; 2004 Oct; 26(5):341-5. PubMed ID: 15300479 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. Wilson LP; Bouwer EJ J Ind Microbiol Biotechnol; 1997; 18(2-3):116-30. PubMed ID: 9134760 [TBL] [Abstract][Full Text] [Related]
20. Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine. Yang C; Tang Y; Xu H; Yan N; Li N; Zhang Y; Rittmann BE Biodegradation; 2018 Oct; 29(5):419-427. PubMed ID: 29785468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]