These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11432856)

  • 1. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA.
    Gomes XV; Schmidt SL; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34776-83. PubMed ID: 11432856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen.
    Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34768-75. PubMed ID: 11432853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading.
    Johnson A; Yao NY; Bowman GD; Kuriyan J; O'Donnell M
    J Biol Chem; 2006 Nov; 281(46):35531-43. PubMed ID: 16980295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin-dependent kinase inhibitor p21 modulates the DNA primer-template recognition complex.
    Waga S; Stillman B
    Mol Cell Biol; 1998 Jul; 18(7):4177-87. PubMed ID: 9632802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PCNA-RFC families of DNA clamps and clamp loaders.
    Majka J; Burgers PM
    Prog Nucleic Acid Res Mol Biol; 2004; 78():227-60. PubMed ID: 15210332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading.
    Schmidt SL; Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34784-91. PubMed ID: 11432854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction.
    Sakato M; Zhou Y; Hingorani MM
    J Mol Biol; 2012 Feb; 416(2):176-91. PubMed ID: 22197378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex.
    Bylund GO; Burgers PM
    Mol Cell Biol; 2005 Jul; 25(13):5445-55. PubMed ID: 15964801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain.
    Henneke G; Gueguen Y; Flament D; Azam P; Querellou J; Dietrich J; Hübscher U; Raffin JP
    J Mol Biol; 2002 Nov; 323(5):795-810. PubMed ID: 12417194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen.
    Yao N; Coryell L; Zhang D; Georgescu RE; Finkelstein J; Coman MM; Hingorani MM; O'Donnell M
    J Biol Chem; 2003 Dec; 278(50):50744-53. PubMed ID: 14530260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen.
    Zhang G; Gibbs E; Kelman Z; O'Donnell M; Hurwitz J
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1869-74. PubMed ID: 10051561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-dependent structural change of the eukaryotic clamp-loader protein, replication factor C.
    Shiomi Y; Usukura J; Masamura Y; Takeyasu K; Nakayama Y; Obuse C; Yoshikawa H; Tsurimoto T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14127-32. PubMed ID: 11121020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA.
    Sakato M; O'Donnell M; Hingorani MM
    J Mol Biol; 2012 Feb; 416(2):163-75. PubMed ID: 22197374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C.
    Marzahn MR; Hayner JN; Meyer JA; Bloom LB
    Biochim Biophys Acta; 2015 Jan; 1854(1):31-8. PubMed ID: 25450506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation.
    Schmidt SL; Pautz AL; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34792-800. PubMed ID: 11549622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.
    Bowman GD; O'Donnell M; Kuriyan J
    Nature; 2004 Jun; 429(6993):724-30. PubMed ID: 15201901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multistep loading of a DNA sliding clamp onto DNA by replication factor C.
    Schrecker M; Castaneda JC; Devbhandari S; Kumar C; Remus D; Hite RK
    Elife; 2022 Aug; 11():. PubMed ID: 35939393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities.
    Uhlmann F; Cai J; Gibbs E; O'Donnell M; Hurwitz J
    J Biol Chem; 1997 Apr; 272(15):10058-64. PubMed ID: 9092549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes.
    Kang MS; Ryu E; Lee SW; Park J; Ha NY; Ra JS; Kim YJ; Kim J; Abdel-Rahman M; Park SH; Lee KY; Kim H; Kang S; Myung K
    Nat Commun; 2019 Jun; 10(1):2420. PubMed ID: 31160570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism.
    Liu J; Zhou Y; Hingorani MM
    J Biol Chem; 2017 Sep; 292(38):15892-15906. PubMed ID: 28808059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.