These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 11432856)
41. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Gaubitz C; Liu X; Magrino J; Stone NP; Landeck J; Hedglin M; Kelch BA Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23571-23580. PubMed ID: 32907938 [TBL] [Abstract][Full Text] [Related]
42. Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. Lau PJ; Kolodner RD J Biol Chem; 2003 Jan; 278(1):14-7. PubMed ID: 12435741 [TBL] [Abstract][Full Text] [Related]
43. Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC. He Q; Wang F; O'Donnell ME; Li H Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2319727121. PubMed ID: 38669181 [TBL] [Abstract][Full Text] [Related]
45. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Li H; O'Donnell M; Kelch B Bioessays; 2022 Nov; 44(11):e2200154. PubMed ID: 36116108 [TBL] [Abstract][Full Text] [Related]
46. The RFC clamp loader: structure and function. Yao NY; O'Donnell M Subcell Biochem; 2012; 62():259-79. PubMed ID: 22918590 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the role of PCNA-DNA contacts during clamp loading. McNally R; Bowman GD; Goedken ER; O'Donnell M; Kuriyan J BMC Struct Biol; 2010 Jan; 10():3. PubMed ID: 20113510 [TBL] [Abstract][Full Text] [Related]
48. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Oku T; Ikeda S; Sasaki H; Fukuda K; Morioka H; Ohtsuka E; Yoshikawa H; Tsurimoto T Genes Cells; 1998 Jun; 3(6):357-69. PubMed ID: 9734782 [TBL] [Abstract][Full Text] [Related]
49. Interactional similarities and differences in the protein complex of PCNA and DNA replication factor C between rice and Arabidopsis. Qian J; Chen Y; Xu Y; Zhang X; Kang Z; Jiao J; Zhao J BMC Plant Biol; 2019 Jun; 19(1):257. PubMed ID: 31200645 [TBL] [Abstract][Full Text] [Related]
50. Identification of the critical region in replication factor C from Pyrococcus furiosus for the stable complex formation with proliferating cell nuclear antigen and DNA. Nishida H; Ishino S; Miyata T; Morikawa K; Ishino Y Genes Genet Syst; 2005 Apr; 80(2):83-93. PubMed ID: 16172520 [TBL] [Abstract][Full Text] [Related]
51. Assembly and distributive action of an archaeal DNA polymerase holoenzyme. Bauer RJ; Wolff ID; Zuo X; Lin HK; Trakselis MA J Mol Biol; 2013 Nov; 425(23):4820-36. PubMed ID: 24035812 [TBL] [Abstract][Full Text] [Related]
52. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. Ohashi E; Tsurimoto T Adv Exp Med Biol; 2017; 1042():135-162. PubMed ID: 29357057 [TBL] [Abstract][Full Text] [Related]
53. DNA polymerase switching: I. Replication factor C displaces DNA polymerase alpha prior to PCNA loading. Maga G; Stucki M; Spadari S; Hübscher U J Mol Biol; 2000 Jan; 295(4):791-801. PubMed ID: 10656791 [TBL] [Abstract][Full Text] [Related]
54. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Vijayakumar S; Chapados BR; Schmidt KH; Kolodner RD; Tainer JA; Tomkinson AE Nucleic Acids Res; 2007; 35(5):1624-37. PubMed ID: 17308348 [TBL] [Abstract][Full Text] [Related]
55. Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA. Podust VN; Tiwari N; Stephan S; Fanning E J Biol Chem; 1998 Nov; 273(48):31992-9. PubMed ID: 9822671 [TBL] [Abstract][Full Text] [Related]
56. Requirement for ATP by the DNA damage checkpoint clamp loader. Majka J; Chung BY; Burgers PM J Biol Chem; 2004 May; 279(20):20921-6. PubMed ID: 15014082 [TBL] [Abstract][Full Text] [Related]
57. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. Kelman Z; Hurwitz J J Biol Chem; 2000 Mar; 275(10):7327-36. PubMed ID: 10702304 [TBL] [Abstract][Full Text] [Related]
58. Inactivating pentapeptide insertions in the fission yeast replication factor C subunit Rfc2 cluster near the ATP-binding site and arginine finger motif. Gray FC; Whitehead KA; MacNeill SA FEBS J; 2009 Sep; 276(17):4803-13. PubMed ID: 19664060 [TBL] [Abstract][Full Text] [Related]
59. Characterization of subcellular localization of eukaryotic clamp loader/unloader and its regulatory mechanism. Park SH; Kim SJ; Myung K; Lee KY Sci Rep; 2021 Nov; 11(1):21817. PubMed ID: 34751190 [TBL] [Abstract][Full Text] [Related]
60. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. Ellison V; Stillman B PLoS Biol; 2003 Nov; 1(2):E33. PubMed ID: 14624239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]