These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 11432910)
1. Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro. López-Villalobos A; Dodds PF; Hornung R J Exp Bot; 2001 May; 52(358):933-42. PubMed ID: 11432910 [TBL] [Abstract][Full Text] [Related]
2. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil. Kumar SN J Agric Food Chem; 2011 Dec; 59(24):13050-8. PubMed ID: 22118628 [TBL] [Abstract][Full Text] [Related]
3. Variability in fatty acid and triacylglycerol composition of the oil of coconut (Cocos nucifera L.) hybrids and their parentals. Laureles LR; Rodriguez FM; Reaño CE; Santos GA; Laurena AC; Mendoza EM J Agric Food Chem; 2002 Mar; 50(6):1581-6. PubMed ID: 11879040 [TBL] [Abstract][Full Text] [Related]
4. Physicochemical characterization and fatty acid profiles of testa oils from various coconut (Cocos nucifera L.) genotypes. Shunmugiah Veluchamy R; Mary R; Beegum Puthiya P S; Pandiselvam R; Padmanabhan S; Sathyan N; Shil S; Niral V; Musuvadi Ramarathinam M; Lokesha AN; Shivashankara KS; Hebbar KB J Sci Food Agric; 2023 Jan; 103(1):370-379. PubMed ID: 36373792 [TBL] [Abstract][Full Text] [Related]
5. In vitro culture of coconut (Cocos nucifera L.) zygotic embryos. Engelmann F; Malaurie B; N'Nan O Methods Mol Biol; 2011; 710():63-72. PubMed ID: 21207262 [TBL] [Abstract][Full Text] [Related]
6. Fatty acid composition and possible health effects of coconut constituents. Pehowich DJ; Gomes AV; Barnes JA West Indian Med J; 2000 Jun; 49(2):128-33. PubMed ID: 10948851 [TBL] [Abstract][Full Text] [Related]
7. Protocol for the Micropropagation of Coconut from Plumule Explants. Sáenz L; Chan JL; Narvaez M; Oropeza C Methods Mol Biol; 2018; 1815():161-170. PubMed ID: 29981119 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium. Manivannan A; Bhardwaj R; Padmanabhan S; Suneja P; Hebbar KB; Kanade SR Food Chem; 2018 Jan; 238():153-159. PubMed ID: 28867086 [TBL] [Abstract][Full Text] [Related]
9. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. Liang Y; Yuan Y; Liu T; Mao W; Zheng Y; Li D BMC Plant Biol; 2014 Aug; 14():205. PubMed ID: 25084812 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and characterisation of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. Yuan Y; Chen Y; Yan S; Liang Y; Zheng Y; Dongdong L Funct Plant Biol; 2013 Feb; 41(1):80-86. PubMed ID: 32480968 [TBL] [Abstract][Full Text] [Related]
11. [A medical study of the low saturated fatty acid. 1. An analysis of low saturated fatty acids from coconut oil]. RYU KW Kumamoto Med J; 1961 Dec; 35():1331-3. PubMed ID: 14495674 [No Abstract] [Full Text] [Related]
12. The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media. Garcia RA; Hotchkiss JH; Steinkraus KH Food Addit Contam; 1999 Feb; 16(2):63-9. PubMed ID: 10435074 [TBL] [Abstract][Full Text] [Related]
13. Identification of Genes Involved in Lipid Biosynthesis through de novo Transcriptome Assembly from Cocos nucifera Developing Endosperm. Reynolds KB; Cullerne DP; El Tahchy A; Rolland V; Blanchard CL; Wood CC; Singh SP; Petrie JR Plant Cell Physiol; 2019 May; 60(5):945-960. PubMed ID: 30608545 [TBL] [Abstract][Full Text] [Related]
14. Structural and interfacial characteristics of oil bodies in coconuts (Cocos nucifera L.). Dave AC; Ye A; Singh H Food Chem; 2019 Mar; 276():129-139. PubMed ID: 30409575 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Chan JL; Saénz L; Talavera C; Hornung R; Robert M; Oropeza C Plant Cell Rep; 1998 Apr; 17(6-7):515-521. PubMed ID: 30736628 [TBL] [Abstract][Full Text] [Related]
16. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.). Gao L; Sun R; Liang Y; Zhang M; Zheng Y; Li D Gene; 2014 Oct; 549(1):70-6. PubMed ID: 25038276 [TBL] [Abstract][Full Text] [Related]
17. Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.). N'Nan O; Hocher V; Verdeil JL; Konan JL; Ballo K; Mondeil F; Malaurie B Cryo Letters; 2008; 29(4):339-50. PubMed ID: 19137197 [TBL] [Abstract][Full Text] [Related]
18. Lipids characterization of ultrasound and microwave processed germinated sorghum. Hassan S; Imran M; Ahmad N; Khan MK Lipids Health Dis; 2017 Jun; 16(1):125. PubMed ID: 28655313 [TBL] [Abstract][Full Text] [Related]
19. Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats. Panchal SK; Carnahan S; Brown L Plant Foods Hum Nutr; 2017 Dec; 72(4):418-424. PubMed ID: 29079969 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Sisunandar ; Rival A; Turquay P; Samosir Y; Adkins SW Planta; 2010 Jul; 232(2):435-47. PubMed ID: 20464558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]