These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 11432955)

  • 21. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange.
    Hao GY; Jones TJ; Luton C; Zhang YJ; Manzane E; Scholz FG; Bucci SJ; Cao KF; Goldstein G
    Tree Physiol; 2009 May; 29(5):697-705. PubMed ID: 19324702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.).
    Bonhomme M; Peuch M; Ameglio T; Rageau R; Guilliot A; Decourteix M; Alves G; Sakr S; Lacointe A
    Tree Physiol; 2010 Jan; 30(1):89-102. PubMed ID: 19955192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa.
    Ewers FW; Lopez-Portillo J; Angeles G; Fisher JB
    Tree Physiol; 2004 Sep; 24(9):1057-62. PubMed ID: 15234903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
    Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B
    Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analysis of long-distance water transport in the soybean stem using H215O.
    Ohya T; Tanoi K; Hamada Y; Okabe H; Rai H; Hojo J; Suzuki K; Nakanishi TM
    Plant Cell Physiol; 2008 May; 49(5):718-29. PubMed ID: 18372296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures.
    McGuire MA; Cerasoli S; Teskey RO
    J Exp Bot; 2007; 58(8):2159-68. PubMed ID: 17490994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the mechanism for winter stem pressure build-up in walnut trees.
    Bozonnet C; Saudreau M; Badel E; Charrier G; Améglio T
    Tree Physiol; 2024 Apr; 44(4):. PubMed ID: 38531772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A semi-physiological model of cold hardening and dehardening in walnut stem.
    Poirier M; Lacointe A; Améglio T
    Tree Physiol; 2010 Dec; 30(12):1555-69. PubMed ID: 21030404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transpiration of water at negative pressures in a synthetic tree.
    Wheeler TD; Stroock AD
    Nature; 2008 Sep; 455(7210):208-12. PubMed ID: 18784721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch.
    Cirelli D; Jagels R; Tyree MT
    Tree Physiol; 2008 Aug; 28(8):1145-55. PubMed ID: 18519246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freeze dehydration vs supercooling in tree stems: physical and physiological modelling.
    Bozonnet C; Saudreau M; Badel E; Améglio T; Charrier G
    Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 37738582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts?
    Cochard H; Bodet C; Améglio T; Cruiziat P
    Plant Physiol; 2000 Nov; 124(3):1191-202. PubMed ID: 11080296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical analysis of the process of cavitation in xylem sap.
    Shen F; Gao R; Liu W; Zhang W
    Tree Physiol; 2002 Jun; 22(9):655-9. PubMed ID: 12069922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of water conductivity on pressure and temperature in plant stems.
    Yamamoto R
    Biorheology; 1995; 32(4):421-30. PubMed ID: 7579207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative measurements of the xylem pressure ofNicotiana plants by means of the pressure bomb and pressure probe.
    Balling A; Zimmermann U
    Planta; 1990 Oct; 182(3):325-38. PubMed ID: 24197182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What are the driving forces for water lifting in the xylem conduit?
    Zimmermann U; Schneider H; Wegner LH; Wagner HJ; Szimtenings M; Haase A; Bentrup FW
    Physiol Plant; 2002 Mar; 114(3):327-335. PubMed ID: 12060254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls.
    Alméras T; Gril J
    Tree Physiol; 2007 Nov; 27(11):1505-16. PubMed ID: 17669740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth-induced water potentials originate from wall yielding during growth.
    Boyer JS
    J Exp Bot; 2001 Jul; 52(360):1483-8. PubMed ID: 11457908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vessel contents of leaves after excision - a test of Scholander's assumption.
    Canny M
    Am J Bot; 1997 Sep; 84(9):1217. PubMed ID: 21708676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.