These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11433278)

  • 1. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter.
    Isalan M; Klug A; Choo Y
    Nat Biotechnol; 2001 Jul; 19(7):656-60. PubMed ID: 11433278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors.
    Dreier B; Beerli RR; Segal DJ; Flippin JD; Barbas CF
    J Biol Chem; 2001 Aug; 276(31):29466-78. PubMed ID: 11340073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and initial characterization of GBF, a novel DNA-binding zinc finger protein that binds to the GC-rich binding sites of the HIV-1 promoter.
    Suzuki T; Yamamoto T; Kurabayashi M; Nagai R; Yazaki Y; Horikoshi M
    J Biochem; 1998 Aug; 124(2):389-95. PubMed ID: 9685731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers.
    Wolfe SA; Ramm EI; Pabo CO
    Structure; 2000 Jul; 8(7):739-50. PubMed ID: 10903945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipartite selection of zinc fingers by phage display for any 9-bp DNA target site.
    Shieh JC
    Methods Mol Biol; 2010; 649():51-76. PubMed ID: 20680827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors.
    Dreier B; Fuller RP; Segal DJ; Lund CV; Blancafort P; Huber A; Koksch B; Barbas CF
    J Biol Chem; 2005 Oct; 280(42):35588-97. PubMed ID: 16107335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Construction of a SV40 promoter specific artificial transcription factor].
    Zhao XH; Zhu XD; Liu J; Rao XJ; Huang PT
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):608-12. PubMed ID: 15969093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains.
    Dreier B; Segal DJ; Barbas CF
    J Mol Biol; 2000 Nov; 303(4):489-502. PubMed ID: 11054286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc finger peptides for the regulation of gene expression.
    Klug A
    J Mol Biol; 1999 Oct; 293(2):215-8. PubMed ID: 10529348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage.
    Choo Y; Klug A
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11163-7. PubMed ID: 7972027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities.
    Rebar EJ; Pabo CO
    Science; 1994 Feb; 263(5147):671-3. PubMed ID: 8303274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions.
    Choo Y; Klug A
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11168-72. PubMed ID: 7972028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA.
    McBryant SJ; Gedulin B; Clemens KR; Wright PE; Gottesfeld JM
    Nucleic Acids Res; 1996 Jul; 24(13):2567-74. PubMed ID: 8692697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.
    Morris JF; Hromas R; Rauscher FJ
    Mol Cell Biol; 1994 Mar; 14(3):1786-95. PubMed ID: 8114711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural analysis of DNA binding by myelin transcription factor 1 double zinc fingers.
    Gamsjaeger R; O'Connell MR; Cubeddu L; Shepherd NE; Lowry JA; Kwan AH; Vandevenne M; Swanton MK; Matthews JM; Mackay JP
    J Biol Chem; 2013 Dec; 288(49):35180-91. PubMed ID: 24097990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of GATA-1 binding to DNA: the role of non-finger residues.
    Ghirlando R; Trainor CD
    J Biol Chem; 2003 Nov; 278(46):45620-8. PubMed ID: 12941967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences.
    Wang BS; Pabo CO
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9568-73. PubMed ID: 10449733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of zinc fingers that bind single-stranded telomeric DNA in the G-quadruplex conformation.
    Isalan M; Patel SD; Balasubramanian S; Choo Y
    Biochemistry; 2001 Jan; 40(3):830-6. PubMed ID: 11170401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of a designed dimeric zinc finger protein bound to DNA.
    Wolfe SA; Grant RA; Pabo CO
    Biochemistry; 2003 Nov; 42(46):13401-9. PubMed ID: 14621985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.