These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 11433436)

  • 1. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry.
    Holliday BJ; Mirkin CA
    Angew Chem Int Ed Engl; 2001 Jun; 40(11):2022-2043. PubMed ID: 11433436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keeping the ball rolling: fullerene-like molecular clusters.
    Kong XJ; Long LS; Zheng Z; Huang RB; Zheng LS
    Acc Chem Res; 2010 Feb; 43(2):201-9. PubMed ID: 19764756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks.
    MacGillivray LR; Papaefstathiou GS; Friscić T; Hamilton TD; Bucar DK; Chu Q; Varshney DB; Georgiev IG
    Acc Chem Res; 2008 Feb; 41(2):280-91. PubMed ID: 18281948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral metallocycles: rational synthesis and novel applications.
    Lee SJ; Lin W
    Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design.
    Saalfrank RW; Maid H; Scheurer A
    Angew Chem Int Ed Engl; 2008; 47(46):8794-824. PubMed ID: 18937234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity.
    Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q
    Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodinuclear transition-metal complexes with multiple metal-metal bonds.
    Collman JP; Boulatov R
    Angew Chem Int Ed Engl; 2002 Nov; 41(21):3948-61. PubMed ID: 12412062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal engineering of a versatile building block toward the design of novel inorganic-organic coordination architectures.
    Du M; Zhao XJ; Wang Y
    Dalton Trans; 2004 Jul; (14):2065-72. PubMed ID: 15249940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus-supported ligands for the assembly of multimetal architectures.
    Chandrasekhar V; Murugesapandian B
    Acc Chem Res; 2009 Aug; 42(8):1047-62. PubMed ID: 19453168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.
    Perry JJ; Perman JA; Zaworotko MJ
    Chem Soc Rev; 2009 May; 38(5):1400-17. PubMed ID: 19384444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular networking of macrocycles based on exo-coordination: from discrete to continuous frameworks.
    Park S; Lee SY; Park KM; Lee SS
    Acc Chem Res; 2012 Mar; 45(3):391-403. PubMed ID: 21967328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular interaction patterns in the zinc(II) dichloride and tin(IV) tetrachloride complexes with dipyrido[f,h]quinoxaline-6,7-dicarbonitrile.
    Kozlov L; Goldberg I
    Acta Crystallogr C; 2008 Mar; 64(Pt 3):m123-6. PubMed ID: 18322323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coordination chemistry of silyl-substituted allyl ligands.
    Solomon SA; Layfield RA
    Dalton Trans; 2010 Mar; 39(10):2469-83. PubMed ID: 20179837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-metal complexes of boron-new insights and novel coordination modes.
    Braunschweig H; Kollann C; Rais D
    Angew Chem Int Ed Engl; 2006 Aug; 45(32):5254-74. PubMed ID: 16826611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.
    Gutzler R; Stepanow S; Grumelli D; Lingenfelder M; Kern K
    Acc Chem Res; 2015 Jul; 48(7):2132-9. PubMed ID: 26121410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular structural variations with changes in anion and solvent in silver(I) complexes of a semirigid, bitopic tris(pyrazolyl)methane ligand.
    Reger DL; Semeniuc RF; Rassolov V; Smith MD
    Inorg Chem; 2004 Jan; 43(2):537-54. PubMed ID: 14731015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers.
    Schubert US; Eschbaumer C
    Angew Chem Int Ed Engl; 2002 Aug; 41(16):2892-926. PubMed ID: 12203414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-template directed assembly: an efficient approach for the supramolecular encapsulation of transition-metal catalysts.
    Kleij AW; Reek JN
    Chemistry; 2006 May; 12(16):4218-27. PubMed ID: 16493698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.