BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 11434768)

  • 1. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site.
    Trehan I; Beadle BM; Shoichet BK
    Biochemistry; 2001 Jul; 40(27):7992-9. PubMed ID: 11434768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analyses of AmpC beta-lactamase through differential stability.
    Beadle BM; McGovern SL; Patera A; Shoichet BK
    Protein Sci; 1999 Sep; 8(9):1816-24. PubMed ID: 10493583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design.
    Powers RA; Caselli E; Focia PJ; Prati F; Shoichet BK
    Biochemistry; 2001 Aug; 40(31):9207-14. PubMed ID: 11478888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic cycle analysis and inhibitor design against beta-lactamase.
    Roth TA; Minasov G; Morandi S; Prati F; Shoichet BK
    Biochemistry; 2003 Dec; 42(49):14483-91. PubMed ID: 14661960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics.
    Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY
    Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
    Weston GS; Blázquez J; Baquero F; Shoichet BK
    J Med Chem; 1998 Nov; 41(23):4577-86. PubMed ID: 9804697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of asparagine 152 in catalysis of beta-lactam hydrolysis by Escherichia coli AmpC beta-lactamase studied by site-directed mutagenesis.
    Dubus A; Normark S; Kania M; Page MG
    Biochemistry; 1995 Jun; 34(23):7757-64. PubMed ID: 7779822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.
    Caselli E; Powers RA; Blasczcak LC; Wu CY; Prati F; Shoichet BK
    Chem Biol; 2001 Jan; 8(1):17-31. PubMed ID: 11182316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate.
    Mehta SC; Furey IM; Pemberton OA; Boragine DM; Chen Y; Palzkill T
    J Biol Chem; 2021; 296():100155. PubMed ID: 33273017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant.
    Sun T; Bethel CR; Bonomo RA; Knox JR
    Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine.
    Chen CC; Herzberg O
    Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic Boronates Inhibit All Classes of β-Lactamases.
    Cahill ST; Cain R; Wang DY; Lohans CT; Wareham DW; Oswin HP; Mohammed J; Spencer J; Fishwick CW; McDonough MA; Schofield CJ; Brem J
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28115348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis.
    Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T
    J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Non-Active-Site Residue Trp-93 in the Function and Stability of New Delhi Metallo-β-Lactamase 1.
    Khan AU; Rehman MT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):356-60. PubMed ID: 26525789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for imipenem inhibition of class C beta-lactamases.
    Beadle BM; Shoichet BK
    Antimicrob Agents Chemother; 2002 Dec; 46(12):3978-80. PubMed ID: 12435704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain.
    Stojanoski V; Adamski CJ; Hu L; Mehta SC; Sankaran B; Zwart P; Prasad BV; Palzkill T
    Biochemistry; 2016 May; 55(17):2479-90. PubMed ID: 27073009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution of Met-69 by Ala or Gly in TEM-1 beta-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors.
    Madec S; Blin C; Krishnamoorthy R; Picard B; Chaibi el B; Fouchereau-Péron M; Labia R
    FEMS Microbiol Lett; 2002 May; 211(1):13-6. PubMed ID: 12052544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam.
    Horii T; Arakawa Y; Ohta M; Ichiyama S; Wacharotayankun R; Kato N
    Antimicrob Agents Chemother; 1993 May; 37(5):984-90. PubMed ID: 8517725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2.
    Endimiani A; Doi Y; Bethel CR; Taracila M; Adams-Haduch JM; O'Keefe A; Hujer AM; Paterson DL; Skalweit MJ; Page MG; Drawz SM; Bonomo RA
    Biochemistry; 2010 Feb; 49(5):1014-23. PubMed ID: 19938877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.