These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11434770)

  • 1. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme.
    Poyner RR; Cleland WW; Reed GH
    Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase.
    Poyner RR; Reed GH
    Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 25Mg NMR studies of yeast enolase and rabbit muscle pyruvate kinase.
    Lee ME; Nowak T
    Arch Biochem Biophys; 1992 Mar; 293(2):264-73. PubMed ID: 1311162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal ion specificity at the catalytic site of yeast enolase.
    Lee ME; Nowak T
    Biochemistry; 1992 Feb; 31(7):2172-80. PubMed ID: 1536858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of His159 in yeast enolase catalysis.
    Vinarov DA; Nowak T
    Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution.
    Zhang E; Hatada M; Brewer JM; Lebioda L
    Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of inhibitory metals to yeast enolase.
    Elliott JI; Brewer JM
    J Inorg Biochem; 1980 Jul; 12(4):323-34. PubMed ID: 6997438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divalent cation and pH dependent primary isotope effects in the enolase reaction.
    Shen TY; Westhead EW
    Biochemistry; 1973 Aug; 12(17):3333-7. PubMed ID: 4581789
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution.
    Lebioda L; Stec B; Brewer JM; Tykarska E
    Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants.
    Poyner RR; Laughlin LT; Sowa GA; Reed GH
    Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride inhibition of enolase: crystal structure and thermodynamics.
    Qin J; Chai G; Brewer JM; Lovelace LL; Lebioda L
    Biochemistry; 2006 Jan; 45(3):793-800. PubMed ID: 16411755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium ion requirements for yeast enolase activity.
    Faller LD; Baroudy BM; Johnson AM; Ewall RX
    Biochemistry; 1977 Aug; 16(17):3864-9. PubMed ID: 332224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and physical properties of Co2+ enolase.
    Rose SL; Dickinson LC; Westhead EW
    J Biol Chem; 1984 Apr; 259(7):4405-13. PubMed ID: 6323470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the second metal site on avian phosphoenolpyruvate carboxykinase.
    Hlavaty JJ; Nowak T
    Biochemistry; 2000 Feb; 39(6):1373-88. PubMed ID: 10684618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.