These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 11434969)

  • 1. Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor.
    Carlozzi P; Sacchi A
    J Biotechnol; 2001 Jul; 88(3):239-49. PubMed ID: 11434969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating and modeling the effect of light intensity on Rhodopseudomonas palustris growth.
    Ross BS; Pott RWM
    Biotechnol Bioeng; 2022 Mar; 119(3):907-921. PubMed ID: 34953072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a limitless scale-up photobioreactor for highly efficient photosynthesis-based polyhydroxybutyrate (PHB)-producing cyanobacteria.
    Lee JS; Sung YJ; Kim DH; Lee JY; Sim SJ
    Bioresour Technol; 2022 Nov; 364():128121. PubMed ID: 36252756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1.
    Ranaivoarisoa TO; Singh R; Rengasamy K; Guzman MS; Bose A
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1401-1417. PubMed ID: 30927110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outdoor biohydrogen production by thermotolerant Rhodopseudomonas pentothenatexigens KKU-SN1/1 in a cluster of ten bioreactors system.
    Punriboon N; Sawaengkaew J; Mahakhan P
    Bioprocess Biosyst Eng; 2024 Apr; 47(4):583-596. PubMed ID: 38491193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-phase and two-phase cultivations using different light regimes to improve production of valuable substances in the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2.
    Saejung C; Chanthakhot T
    Bioresour Technol; 2021 May; 328():124855. PubMed ID: 33618182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency.
    Carlozzi P; Pushparaj B; Degl'Innocenti A; Capperucci A
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):789-95. PubMed ID: 16944131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of Purple Phototrophic Bacteria Biomass Resulting from Photo Fermentation Aimed at Biohydrogen Production.
    Policastro G; Cesaro A; Fabbricino M
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of light emission spectrum on biohydrogen production by Rhodopseudomonas palustris.
    Bosman CE; Pott RWM; Bradshaw SM
    Bioprocess Biosyst Eng; 2023 Jun; 46(6):913-919. PubMed ID: 36973588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of diurnal light cycles on biohydrogen production in a thermosiphon photobioreactor.
    Bosman CE; van Wyk P; Pott RWM; Bradshaw SM
    AMB Express; 2023 Mar; 13(1):26. PubMed ID: 36867285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Thermosiphon Photobioreactor for Photofermentative Hydrogen Production by
    Bosman CE; McClelland Pott RW; Bradshaw SM
    Bioengineering (Basel); 2022 Jul; 9(8):. PubMed ID: 35892758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
    Haas NW; Jain A; Hying Z; Arif SJ; Niehaus TD; Gralnick JA; Fixen KR
    Appl Environ Microbiol; 2022 Aug; 88(15):e0097422. PubMed ID: 35862670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of silica-core gold-shell nanoparticles on the kinetics of biohydrogen production and pollutant hydrogenation via organic acid photofermentation over enhanced near-infrared illumination.
    Ji Y; Sultan MA; Kim DY; Meeks N; Hastings JT; Bhattacharyya D
    Int J Hydrogen Energy; 2021 Feb; 46(11):7821-7835. PubMed ID: 35185266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHA Production from Cheese Whey and "Scotta": Comparison between a Consortium and a Pure Culture of
    Bosco F; Cirrincione S; Carletto R; Marmo L; Chiesa F; Mazzoli R; Pessione E
    Microorganisms; 2021 Nov; 9(12):. PubMed ID: 34946028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery.
    Lu H; Zhang G; He S; Zhao R; Zhu D
    World J Microbiol Biotechnol; 2021 Aug; 37(9):161. PubMed ID: 34436687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate.
    Touloupakis E; Poloniataki EG; Ghanotakis DF; Carlozzi P
    Appl Biochem Biotechnol; 2021 Jan; 193(1):307-318. PubMed ID: 32954484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a low-cost culture medium for the rapid production of plant growth-promoting Rhodopseudomonas palustris strain PS3.
    Lo KJ; Lee SK; Liu CT
    PLoS One; 2020; 15(7):e0236739. PubMed ID: 32730333
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.