BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11435134)

  • 1. Biochemical properties of porcine white adipose tissue mitochondria and relevance to fatty acid oxidation.
    Koekemoer TC; Oelofsen W
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Jul; 129(4):797-807. PubMed ID: 11435134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of porcine white adipose tissue and liver mitochondrial subpopulations.
    Koekemoer TC; Oelofsen W
    Int J Biochem Cell Biol; 2001 Sep; 33(9):889-901. PubMed ID: 11461831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscles of the rat.
    Hansford RG; Castro F
    Mech Ageing Dev; 1982 Jun; 19(2):191-200. PubMed ID: 6287124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative properties of swollen rat liver mitochondria.
    Matlib MA; Srere PA
    Arch Biochem Biophys; 1976 Jun; 174(2):705-12. PubMed ID: 180903
    [No Abstract]   [Full Text] [Related]  

  • 5. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD; Saggerson ED
    Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes.
    Deveaud C; Beauvoit B; Salin B; Schaeffer J; Rigoulet M
    Mol Cell Biochem; 2004 Dec; 267(1-2):157-66. PubMed ID: 15663197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure.
    Sheeran FL; Pepe S
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E449-60. PubMed ID: 27406740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activities of enzymes of the citric acid cycle and electron transport chain in the skeletal muscle of normal and dystrophic mice (strain 129).
    Jato-Rodriguez JJ; Hudson AJ; Strickland KP
    Enzyme; 1972; 13(5-6):286-92. PubMed ID: 4376082
    [No Abstract]   [Full Text] [Related]  

  • 10. The inhibition of isocitrate oxidation by palmitoyl-l-carnitine and palmitoyl-C0 A in rat liver mitochondria.
    Lenartowicz E; Winter C; Kunz W; Wojtczak AB
    Eur J Biochem; 1976 Aug; 67(1):137-44. PubMed ID: 183951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous carnitine application augments transport of fatty acids into mitochondria and stimulates mitochondrial respiration in maize seedlings grown under normal and cold conditions.
    Turk H; Erdal S; Dumlupinar R
    Cryobiology; 2019 Dec; 91():97-103. PubMed ID: 31589831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the citric acid cycle in mammalian systems.
    Williamson JR; Cooper RH
    FEBS Lett; 1980 Aug; 117 Suppl():K73-85. PubMed ID: 6998729
    [No Abstract]   [Full Text] [Related]  

  • 13. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats.
    Perrone CE; Mattocks DA; Jarvis-Morar M; Plummer JD; Orentreich N
    Metabolism; 2010 Jul; 59(7):1000-11. PubMed ID: 20045141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of L-acetylcarnitine on different cerebral mitochondrial populations from cerebral cortex.
    Gorini A; D'Angelo A; Villa RF
    Neurochem Res; 1998 Dec; 23(12):1485-91. PubMed ID: 9821151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates.
    Alp PR; Newsholme EA; Zammit VA
    Biochem J; 1976 Mar; 154(3):689-700. PubMed ID: 8036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some metabolic characteristics of brown fat, with particular reference to the mitochondria.
    Thompson JF; Smith DE; Nance SL; Habeck DA
    Comp Biochem Physiol; 1968 Jun; 25(3):783-804. PubMed ID: 4321044
    [No Abstract]   [Full Text] [Related]  

  • 17. Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria. Studies with D-threo-alpha-methylisocitrate.
    Smith CM; Plaut GW
    Eur J Biochem; 1979 Jun; 97(1):283-95. PubMed ID: 38961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid oxidation drives mitochondrial hydrogen peroxide production by α-ketoglutarate dehydrogenase.
    Grayson C; Faerman B; Koufos O; Mailloux RJ
    J Biol Chem; 2024 Apr; 300(4):107159. PubMed ID: 38479602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular distribution of isocitrate dehydrogenase in early and term human placenta.
    Scisłowski PW; Zołnierowicz S; Zelewski L
    Biochem J; 1983 Aug; 214(2):339-43. PubMed ID: 6311181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and functional differences in rat liver mitochondrial subpopulations obtained at different gravitational forces.
    Lanni A; Moreno M; Lombardi A; Goglia F
    Int J Biochem Cell Biol; 1996 Mar; 28(3):337-43. PubMed ID: 8920643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.