BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11435697)

  • 1. Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes.
    Nie W; Rens W; Wang J; Yang F
    Cytogenet Cell Genet; 2001; 92(3-4):248-53. PubMed ID: 11435697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human.
    Graphodatsky AS; Yang F; Serdukova N; Perelman P; Zhdanova NS; Ferguson-Smith MA
    Cytogenet Cell Genet; 2000; 90(3-4):275-8. PubMed ID: 11124533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between Homo sapiens and Hylobates leucogenys.
    Rens W; Yang F; O'Brien PC; Solanky N; Ferguson-Smith MA
    Genes Chromosomes Cancer; 2001 May; 31(1):65-74. PubMed ID: 11284037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting].
    Yu D; Yang F; Liu R
    Yi Chuan Xue Bao; 1997 Oct; 24(5):417-23. PubMed ID: 9494294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.
    Misceo D; Capozzi O; Roberto R; Dell'oglio MP; Rocchi M; Stanyon R; Archidiacono N
    Genome Res; 2008 Sep; 18(9):1530-7. PubMed ID: 18552313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization.
    Koehler U; Arnold N; Wienberg J; Tofanelli S; Stanyon R
    Am J Phys Anthropol; 1995 May; 97(1):37-47. PubMed ID: 7645672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species.
    Graphodatsky AS; Yang F; O'Brien PC; Perelman P; Milne BS; Serdukova N; Kawada SI; Ferguson-Smith MA
    Cytogenet Cell Genet; 2001; 92(3-4):243-7. PubMed ID: 11435696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding.
    Mrasek K; Heller A; Rubtsov N; Trifonov V; Starke H; Claussen U; Liehr T
    Int J Mol Med; 2003 Aug; 12(2):139-46. PubMed ID: 12851708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting.
    Koehler U; Bigoni F; Wienberg J; Stanyon R
    Genomics; 1995 Nov; 30(2):287-92. PubMed ID: 8586429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-species colour segmenting: a novel tool in human karyotype analysis.
    Müller S; O'Brien PC; Ferguson-Smith MA; Wienberg J
    Cytometry; 1998 Dec; 33(4):445-52. PubMed ID: 9845439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting.
    Arnold N; Stanyon R; Jauch A; O'Brien P; Wienberg J
    Cytogenet Cell Genet; 1996; 74(1-2):80-5. PubMed ID: 8893807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting.
    Jauch A; Wienberg J; Stanyon R; Arnold N; Tofanelli S; Ishida T; Cremer T
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8611-5. PubMed ID: 1528869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Karyotypic study of four gibbon forms provisionally considered as subspecies of Hylobates (Nomascus) concolor (Primates, Hylobatidae).
    Couturier J; Lernould JM
    Folia Primatol (Basel); 1991; 56(2):95-104. PubMed ID: 2045017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative karyotyping of our gibbon species or subspecies (author's transl)].
    Couturier J; Dutrillaux B; Turleau C; de Grouchy J
    Ann Genet; 1982; 25(1):5-10. PubMed ID: 6979300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar.
    Hirai H; Hirai Y; Domae H; Kirihara Y
    Hum Genet; 2007 Dec; 122(5):477-83. PubMed ID: 17717705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-resolution map of synteny disruptions in gibbon and human genomes.
    Carbone L; Vessere GM; ten Hallers BF; Zhu B; Osoegawa K; Mootnick A; Kofler A; Wienberg J; Rogers J; Humphray S; Scott C; Harris RA; Milosavljevic A; de Jong PJ
    PLoS Genet; 2006 Dec; 2(12):e223. PubMed ID: 17196042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction, characterization, and chromosomal mapping of a fosmid library of the white-cheeked gibbon (Nomascus leucogenys).
    Chen L; Ye J; Liu Y; Wang J; Su W; Yang F; Nie W
    Genomics Proteomics Bioinformatics; 2007 Dec; 5(3-4):207-15. PubMed ID: 18267302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zoo-FISH analysis of dog chromosome 5: identification of conserved synteny with human and cat chromosomes.
    Thomas R; Breen M; Langford CF; Binns MM
    Cytogenet Cell Genet; 1999; 87(1-2):4-10. PubMed ID: 10640803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal phylogeny and evolution of gibbons (Hylobatidae).
    Müller S; Hollatz M; Wienberg J
    Hum Genet; 2003 Nov; 113(6):493-501. PubMed ID: 14569461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zoo-FISH with region-specific paints for mink chromosome 5q: delineation of inter- and intrachromosomal rearrangements in human, pig, and fox.
    Rubtsov NB; Karamisheva TV; Astakhova NM; Liehr T; Claussen U; Zhdanova NS
    Cytogenet Cell Genet; 2000; 90(3-4):268-70. PubMed ID: 11124531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.