These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11435816)

  • 1. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: part 1.
    Chang CC; Liang SM; Pu YR; Chen CH; Manousakas I; Chen TS; Kuo CL; Yu FM; Chu ZF
    J Urol; 2001 Jul; 166(1):28-32. PubMed ID: 11435816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of the revised ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part 1.
    Chang CC; Pu YR; Manousakas I; Liang SM; Yu FM; Tong YC; Lin SH
    J Urol; 2013 Jun; 189(6):2357-63. PubMed ID: 23201381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro study of ultrasound based real-time tracking for renal stones in shock wave lithotripsy: Part II--a simulated animal experiment.
    Chang CC; Manousakas I; Pu YR; Liang SM; Chen CH; Chen TS; Yu FM; Yang WH; Tong YC; Kuo CL
    J Urol; 2002 Jun; 167(6):2594-7. PubMed ID: 11992093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image based renal stone tracking to improve efficacy in extracorporeal lithotripsy.
    Orkisz M; Farchtchian T; Saighi D; Bourlion M; Thiounn N; Gimenez G; Debré B; Flam TA
    J Urol; 1998 Oct; 160(4):1237-40. PubMed ID: 9751326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound image analysis for renal stone tracking during extracorporeal shock wave lithotripsy.
    Manousakas I; Pu YR; Chang CC; Liang SM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2746-9. PubMed ID: 17945734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New ultrasound navigational system in extracorporeal lithotripsy: decreased fluoroscopy and radiation].
    Abid N; Ravier E; Codas R; Crouzet S; Martin X
    Prog Urol; 2013 Sep; 23(10):856-60. PubMed ID: 24034797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical experience with ultrasound-based real-time tracking lithotripsy in the single renal stone treatment.
    Chen CJ; Hsu HC; Chung WS; Yu HJ
    J Endourol; 2009 Nov; 23(11):1811-5. PubMed ID: 19814698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking kidney stones in a homogeneous medium using a trilateration approach.
    Shoar K; Turney BW; Cleveland RO
    J Acoust Soc Am; 2017 Dec; 142(6):3715. PubMed ID: 29289106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.
    Dogan HS; Altan M; Citamak B; Bozaci AC; Karabulut E; Tekgul S
    J Pediatr Urol; 2015 Apr; 11(2):84.e1-6. PubMed ID: 25812469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Color processing of ultrasonographic images in extracorporeal lithotripsy].
    Lardennois B; Ziade A; Walter K
    Prog Urol; 1991 Feb; 1(1):139-48. PubMed ID: 1364639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of an abdominal compression belt to reduce stone movement during extracorporeal shock wave lithotripsy.
    Honey RJ; Healy M; Yeung M; Psihramis KE; Jewett MA
    J Urol; 1992 Sep; 148(3 Pt 2):1034-5. PubMed ID: 1507324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction?
    Madbouly K; Sheir KZ; Elsobky E
    J Urol; 2001 May; 165(5):1415-8. PubMed ID: 11342888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment.
    Leighton TG; Fedele F; Coleman AJ; McCarthy C; Ryves S; Hurrell AM; De Stefano A; White PR
    Ultrasound Med Biol; 2008 Oct; 34(10):1651-65. PubMed ID: 18562085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography.
    Torricelli FC; Marchini GS; Yamauchi FI; Danilovic A; Vicentini FC; Srougi M; Monga M; Mazzucchi E
    J Urol; 2015 Jun; 193(6):2002-7. PubMed ID: 25524240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed tomography of kidney stones for extracorporeal shock wave lithotripsy.
    Rodríguez AO; Cadena M; Azpiroz J; Gutiérrez J; Bustos J; Castaño E; Loske AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2774-5. PubMed ID: 17946980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study.
    Micali S; Sighinolfi MC; Celia A; De Stefani S; Grande M; Cicero AF; Bianchi G
    J Urol; 2006 Sep; 176(3):1020-2. PubMed ID: 16890682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic renal-stone tracking with mesh regularization.
    Tsao J; He JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2187-90. PubMed ID: 18002423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial.
    Pace KT; Ghiculete D; Harju M; Honey RJ;
    J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model.
    Abdel-Khalek M; Sheir KZ; Mokhtar AA; Eraky I; Kenawy M; Bazeed M
    Scand J Urol Nephrol; 2004; 38(2):161-7. PubMed ID: 15204407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.