BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11436788)

  • 1. Water quality assessment for indirect potable reuse: a new methodology for controlling trace organic compounds at the West Basin Water Recycling Plant (California, USA).
    Levine B; Reich K; Sheilds P; Suffet IH; Lazarova V
    Water Sci Technol; 2001; 43(10):249-57. PubMed ID: 11436788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency and sustainability of soil-aquifer treatment for indirect potable reuse of reclaimed water.
    Drewes JE; Fox P; Nellor MH
    Schriftenr Ver Wasser Boden Lufthyg; 2000; 105():227-32. PubMed ID: 10842819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source water impact model (SWIM)--a watershed guided approach as a new planing tool for indirect potable water reuse.
    Drewes JE; Fox P
    Water Sci Technol; 2001; 43(10):267-75. PubMed ID: 11436791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations.
    Asano T; Cotruvo JA
    Water Res; 2004 Apr; 38(8):1941-51. PubMed ID: 15087175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.
    Fox P; Narayanaswamy K; Genz A; Drewes JE
    Water Sci Technol; 2001; 43(10):343-50. PubMed ID: 11436800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Oxnard advanced water purification facility: combining indirect potable reuse with reverse osmosis concentrate beneficial use to ensure a California community's water sustainability and provide coastal wetlands restoration.
    Lozier J; Ortega K
    Water Sci Technol; 2010; 61(5):1157-63. PubMed ID: 20220237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge.
    Kazner C; Wintgens T; Melin T; Baghoth S; Sharma S; Amy G
    Water Sci Technol; 2008; 57(6):821-7. PubMed ID: 18413940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C; Drewes JE
    Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging contaminants and treatment options in water recycling for indirect potable use.
    Wintgens T; Salehi F; Hochstrat R; Melin T
    Water Sci Technol; 2008; 57(1):99-107. PubMed ID: 18192746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. National Research Council report on potable reuse.
    Crook J
    Schriftenr Ver Wasser Boden Lufthyg; 2000; 105():221-6. PubMed ID: 10842818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water.
    Drewes JE; Reinhard M; Fox P
    Water Res; 2003 Sep; 37(15):3612-21. PubMed ID: 12867327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace organic chemicals contamination in ground water recharge.
    Díaz-Cruz MS; Barceló D
    Chemosphere; 2008 Jun; 72(3):333-42. PubMed ID: 18378277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Part I. Identifying anthropogenic markers in surface waters influenced by treated effluents: a tool in potable water reuse.
    Sirivedhin T; Gray KA
    Water Res; 2005 Mar; 39(6):1154-64. PubMed ID: 15766970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A screening level fate model of organic contaminants from advanced water treatment in a potable water supply reservoir.
    Hawker DW; Cumming JL; Neale PA; Bartkow ME; Escher BI
    Water Res; 2011 Jan; 45(2):768-80. PubMed ID: 20851445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk assessment for organic trace compounds in wastewater: comparison of conventional and advanced treatment.
    Schwätter F; Hannich CB; Nöthe T; Oehlmann J; Fahlenkamp H
    Water Sci Technol; 2007; 56(5):9-13. PubMed ID: 17881832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant.
    Stackelberg PE; Furlong ET; Meyer MT; Zaugg SD; Henderson AK; Reissman DB
    Sci Total Environ; 2004 Aug; 329(1-3):99-113. PubMed ID: 15262161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening health risk assessment of micropullutants for indirect potable reuse schemes: a three-tiered approach.
    Rodriguez C; Cook A; Van Buynder P; Devine B; Weinstein P
    Water Sci Technol; 2007; 56(11):35-42. PubMed ID: 18057639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.
    Stackelberg PE; Gibs J; Furlong ET; Meyer MT; Zaugg SD; Lippincott RL
    Sci Total Environ; 2007 May; 377(2-3):255-72. PubMed ID: 17363035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards indirect potable reuse in South East Queensland.
    Traves WH; Gardner EA; Dennien B; Spiller D
    Water Sci Technol; 2008; 58(1):153-61. PubMed ID: 18653949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.