These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 11436975)
1. Gradient micropattern immobilization of heparin and its interaction with cells. Ito Y; Hayashi M; Imanishi Y J Biomater Sci Polym Ed; 2001; 12(4):367-78. PubMed ID: 11436975 [TBL] [Abstract][Full Text] [Related]
2. Micropattern immobilization of polysaccharide. Ito Y J Inorg Biochem; 2000 Apr; 79(1-4):77-81. PubMed ID: 10830850 [TBL] [Abstract][Full Text] [Related]
3. Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor. Bos GW; Scharenborg NM; Poot AA; Engbers GH; Beugeling T; van Aken WG; Feijen J J Biomed Mater Res; 1999 Mar; 44(3):330-40. PubMed ID: 10397936 [TBL] [Abstract][Full Text] [Related]
4. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Chen G; Ito Y Biomaterials; 2001 Sep; 22(18):2453-7. PubMed ID: 11516075 [TBL] [Abstract][Full Text] [Related]
5. Micropattern-immobilization of heparin to regulate cell growth with fibroblast growth factor. Park YS; Ito Y Cytotechnology; 2000 Jul; 33(1-3):117-22. PubMed ID: 19002818 [TBL] [Abstract][Full Text] [Related]
6. Endogenous basic fibroblast growth factor displaced by heparin from the lumenal surface of human blood vessels is preferentially sequestered by injured regions of the vessel wall. Medalion B; Merin G; Aingorn H; Miao HQ; Nagler A; Elami A; Ishai-Michaeli R; Vlodavsky I Circulation; 1997 Apr; 95(7):1853-62. PubMed ID: 9107173 [TBL] [Abstract][Full Text] [Related]
8. Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Arisaka Y; Kobayashi J; Yamato M; Akiyama Y; Okano T Biomaterials; 2013 Jun; 34(17):4214-22. PubMed ID: 23498894 [TBL] [Abstract][Full Text] [Related]
9. Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. Nugent MA; Karnovsky MJ; Edelman ER Circ Res; 1993 Dec; 73(6):1051-60. PubMed ID: 8222077 [TBL] [Abstract][Full Text] [Related]
10. Oriented immobilization of basic fibroblast growth factor: Bioengineered surface design for the expansion of human mesenchymal stromal cells. Shakya A; Imado E; Nguyen PK; Matsuyama T; Horimoto K; Hirata I; Kato K Sci Rep; 2020 May; 10(1):8762. PubMed ID: 32472000 [TBL] [Abstract][Full Text] [Related]
11. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. van Wachem PB; Plantinga JA; Wissink MJ; Beernink R; Poot AA; Engbers GH; Beugeling T; van Aken WG; Feijen J; van Luyn MJ J Biomed Mater Res; 2001 Jun; 55(3):368-78. PubMed ID: 11255190 [TBL] [Abstract][Full Text] [Related]
12. Accelerated tissue integration into porous materials by immobilizing basic fibroblast growth factor using a biologically safe three-step reaction. Kakinoki S; Sakai Y; Fujisato T; Yamaoka T J Biomed Mater Res A; 2015 Dec; 103(12):3790-7. PubMed ID: 26034014 [TBL] [Abstract][Full Text] [Related]
13. Gradient micropattern immobilization of a thermo-responsive polymer to investigate its effect on cell behavior. Liu H; Ito Y J Biomed Mater Res A; 2003 Dec; 67(4):1424-9. PubMed ID: 14624531 [TBL] [Abstract][Full Text] [Related]
14. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. Doi K; Matsuda T J Biomed Mater Res; 1997 Mar; 34(3):361-70. PubMed ID: 9086406 [TBL] [Abstract][Full Text] [Related]
15. Adhesion and differentiation of adipose-derived stem cells on a substrate with immobilized fibroblast growth factor. Kang JM; Han M; Park IS; Jung Y; Kim SH; Kim SH Acta Biomater; 2012 May; 8(5):1759-67. PubMed ID: 22285427 [TBL] [Abstract][Full Text] [Related]
17. Heparin-carrying polystyrene (HCPS)-bound collagen substratum to immobilize heparin-binding growth factors and to enhance cellular growth. Ishihara M; Sato M; Hattori H; Saito Y; Yura H; Ono K; Masuoka K; Kikuchi M; Fujikawa K; Kurita A J Biomed Mater Res; 2001 Sep; 56(4):536-44. PubMed ID: 11400131 [TBL] [Abstract][Full Text] [Related]
18. Regulation of chick muscle satellite cells by fibroblast growth factors: interaction with insulin-like growth factor-I and heparin. Wilkie RS; O'Neill IE; Butterwith SC; Duclos MJ; Goddard C Growth Regul; 1995 Mar; 5(1):18-27. PubMed ID: 7538368 [TBL] [Abstract][Full Text] [Related]
19. Heparin-mediated electrostatic immobilization of bFGF Cho Y; Baek J; Lee E; Im SG J Mater Chem B; 2021 Mar; 9(8):2084-2091. PubMed ID: 33595038 [TBL] [Abstract][Full Text] [Related]
20. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. Yoon JJ; Chung HJ; Lee HJ; Park TG J Biomed Mater Res A; 2006 Dec; 79(4):934-42. PubMed ID: 16941589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]