These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 11437368)
1. Oxidative hydrolysis of scoparone by cytochrome p450 CYP2C29 reveals a novel metabolite. Meyer RP; Hagemeyer CE; Knoth R; Kurz G; Volk B Biochem Biophys Res Commun; 2001 Jul; 285(1):32-9. PubMed ID: 11437368 [TBL] [Abstract][Full Text] [Related]
2. Regioselective O-demethylation of scoparone (6,7-dimethoxycoumarin) to assess cytochrome P450 activities in vitro in rat. Effects of gonadal steroids and the involvement of constitutive P450 enzymes. Witkamp RF; Nijmeijer SM; Mennes WC; Rozema AW; Noordhoek J; van Miert AS Xenobiotica; 1993 Apr; 23(4):401-10. PubMed ID: 8337898 [TBL] [Abstract][Full Text] [Related]
3. Comparison of In Vitro Hepatic Scoparone 7-O-Demethylation between Humans and Experimental Animals. Fayyaz A; Makwinja S; Auriola S; Raunio H; Juvonen RO Planta Med; 2018 Mar; 84(5):320-328. PubMed ID: 28950382 [TBL] [Abstract][Full Text] [Related]
4. O-demethylation of scoparone and studies on the scoparone-induced spectral change of cytochrome P-450 in rat liver microsomes. Müller-Enoch D; Sato N; Thomas H Hoppe Seylers Z Physiol Chem; 1981 Aug; 362(8):1091-9. PubMed ID: 7346377 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of Scoparone in Experimental Animals and Humans. Juvonen RO; Novák F; Emmanouilidou E; Auriola S; Timonen J; Heikkinen AT; Küblbeck J; Finel M; Raunio H Planta Med; 2019 Apr; 85(6):453-464. PubMed ID: 30736072 [TBL] [Abstract][Full Text] [Related]
6. Microsomal oxidation of N,N-diethylformamide and its effect on P450-dependent monooxygenases in rat liver. Amato G; Longo V; Mazzaccaro A; Gervasi PG Chem Res Toxicol; 1996; 9(5):882-90. PubMed ID: 8828925 [TBL] [Abstract][Full Text] [Related]
7. Possible function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures. Meyer RP; Knoth R; Schiltz E; Volk B Exp Neurol; 2001 Feb; 167(2):376-84. PubMed ID: 11161626 [TBL] [Abstract][Full Text] [Related]
8. Induction of liver microsomal cytochrome P450 in cynomolgus monkeys. Bullock P; Pearce R; Draper A; Podval J; Bracken W; Veltman J; Thomas P; Parkinson A Drug Metab Dispos; 1995 Jul; 23(7):736-48. PubMed ID: 7587963 [TBL] [Abstract][Full Text] [Related]
9. 3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, is a substrate for microsomal aldehyde oxygenase in the mouse liver. Watanabe K; Kayano Y; Matsunaga T; Yamamoto I; Yoshimura H Biol Pharm Bull; 1995 May; 18(5):696-9. PubMed ID: 7492985 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Dual pathways involving novel ortho ring-hydroxylation by CYP2B. Dehal SS; Kupfer D Drug Metab Dispos; 1994; 22(6):937-46. PubMed ID: 7895613 [TBL] [Abstract][Full Text] [Related]
11. Differentiation of cytochrome P-450 activities with scoparone as substrate. A rapid one-step HPLC-analysis. Müller-Enoch D; Greischel A Arzneimittelforschung; 1988 Oct; 38(10):1520-2. PubMed ID: 3196394 [TBL] [Abstract][Full Text] [Related]
12. Cyclopropylamine inactivation of cytochromes P450: role of metabolic intermediate complexes. Cerny MA; Hanzlik RP Arch Biochem Biophys; 2005 Apr; 436(2):265-75. PubMed ID: 15797239 [TBL] [Abstract][Full Text] [Related]
13. Regioselective O-demethylation of scoparone: differentiation between rat liver cytochrome P-450 isozymes. Müller-Enoch D; Büttgen E; Nonnenmacher A Z Naturforsch C Biosci; 1985; 40(9-10):682-4. PubMed ID: 4082729 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of tolualdehydes to toluic acids catalyzed by cytochrome P450-dependent aldehyde oxygenase in the mouse liver. Watanabe K; Matsunaga T; Yamamoto I; Yashimura H Drug Metab Dispos; 1995 Feb; 23(2):261-5. PubMed ID: 7736922 [TBL] [Abstract][Full Text] [Related]
15. Human liver microsomes are efficient catalysts of 1,3-butadiene oxidation: evidence for major roles by cytochromes P450 2A6 and 2E1. Duescher RJ; Elfarra AA Arch Biochem Biophys; 1994 Jun; 311(2):342-9. PubMed ID: 8203896 [TBL] [Abstract][Full Text] [Related]
16. Biotransformation of scoparone used to monitor changes in cytochrome P450 activities in primary hepatocyte cultures derived from rats, hamsters and monkeys. Mennes WC; van Holsteijn CW; Timmerman A; Noordhoek J; Blaauboer BJ Biochem Pharmacol; 1991 Apr; 41(8):1203-8. PubMed ID: 2009095 [TBL] [Abstract][Full Text] [Related]
17. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Miyazawa M; Shindo M; Shimada T Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812 [TBL] [Abstract][Full Text] [Related]
18. Chiral sulfoxidation of albendazole by the flavin adenine dinucleotide-containing and cytochrome P450-dependent monooxygenases from rat liver microsomes. Moroni P; Buronfosse T; Longin-Sauvageon C; Delatour P; Benoit E Drug Metab Dispos; 1995 Feb; 23(2):160-5. PubMed ID: 7736906 [TBL] [Abstract][Full Text] [Related]
19. The constitutive active/androstane receptor regulates phenytoin induction of Cyp2c29. Jackson JP; Ferguson SS; Moore R; Negishi M; Goldstein JA Mol Pharmacol; 2004 Jun; 65(6):1397-404. PubMed ID: 15155833 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, and characterization of 7-methoxy-4-(aminomethyl)coumarin as a novel and selective cytochrome P450 2D6 substrate suitable for high-throughput screening. Onderwater RC; Venhorst J; Commandeur JN; Vermeulen NP Chem Res Toxicol; 1999 Jul; 12(7):555-9. PubMed ID: 10409393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]