These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11437738)

  • 1. Brief intense exercise followed by passive recovery modifies the pattern of fuel use in humans during subsequent sustained intermittent exercise.
    Christmass MA; Dawson B; Goodman C; Arthur PG
    Acta Physiol Scand; 2001 May; 172(1):39-52. PubMed ID: 11437738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise.
    Christmass MA; Dawson B; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):436-47. PubMed ID: 10502077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise.
    Christmass MA; Dawson B; Passeretto P; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):423-35. PubMed ID: 10502076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of work:rest duration on physiological and perceptual responses during intermittent exercise and performance.
    Price M; Moss P
    J Sports Sci; 2007 Dec; 25(14):1613-21. PubMed ID: 17852683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of work-rest duration on intermittent exercise and subsequent performance.
    Price M; Halabi K
    J Sports Sci; 2005 Aug; 23(8):835-42. PubMed ID: 16195035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans.
    Kimber NE; Heigenhauser GJ; Spriet LL; Dyck DJ
    J Physiol; 2003 May; 548(Pt 3):919-27. PubMed ID: 12651914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
    Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased carbohydrate oxidation after ingesting carbohydrate with added protein.
    Betts JA; Williams C; Boobis L; Tsintzas K
    Med Sci Sports Exerc; 2008 May; 40(5):903-12. PubMed ID: 18408607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate availability and muscle energy metabolism during intermittent running.
    Foskett A; Williams C; Boobis L; Tsintzas K
    Med Sci Sports Exerc; 2008 Jan; 40(1):96-103. PubMed ID: 18091017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine and fat oxidation.
    Stephens FB; Galloway SD
    Nestle Nutr Inst Workshop Ser; 2013; 76():13-23. PubMed ID: 23899751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise.
    Vukovich MD; Costill DL; Fink WJ
    Med Sci Sports Exerc; 1994 Sep; 26(9):1122-9. PubMed ID: 7808246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of epinephrine on glucose disposal during exercise in humans: role of muscle glycogen.
    Watt MJ; Hargreaves M
    Am J Physiol Endocrinol Metab; 2002 Sep; 283(3):E578-83. PubMed ID: 12169452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of carbohydrate ingestion on metabolism during running and cycling.
    Arkinstall MJ; Bruce CR; Nikolopoulos V; Garnham AP; Hawley JA
    J Appl Physiol (1985); 2001 Nov; 91(5):2125-34. PubMed ID: 11641353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid upregulation of pyruvate dehydrogenase kinase activity in human skeletal muscle during prolonged exercise.
    Watt MJ; Heigenhauser GJ; LeBlanc PJ; Inglis JG; Spriet LL; Peters SJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1261-7. PubMed ID: 15169745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary glycemic index influences lipid oxidation but not muscle or liver glycogen oxidation during exercise.
    Stevenson EJ; Thelwall PE; Thomas K; Smith F; Brand-Miller J; Trenell MI
    Am J Physiol Endocrinol Metab; 2009 May; 296(5):E1140-7. PubMed ID: 19223653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-intensity exercise and muscle glycogen availability in humans.
    Balsom PD; Gaitanos GC; Söderlund K; Ekblom B
    Acta Physiol Scand; 1999 Apr; 165(4):337-45. PubMed ID: 10350228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus.
    West DJ; Stephens JW; Bain SC; Kilduff LP; Luzio S; Still R; Bracken RM
    J Sports Sci; 2011 Feb; 29(3):279-89. PubMed ID: 21154013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C.
    Morris JG; Nevill ME; Boobis LH; Macdonald IA; Williams C
    Int J Sports Med; 2005 Dec; 26(10):805-14. PubMed ID: 16320162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.