BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11438169)

  • 1. Role of hypothalamic-pituitary axis in morphine-induced alteration in thymic cell distribution using mu-opioid receptor knockout mice.
    Roy S; Wang JH; Balasubramanian S; Sumandeep ; Charboneau R; Barke R; Loh HH
    J Neuroimmunol; 2001 Jun; 116(2):147-55. PubMed ID: 11438169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mu-opioid receptor in immune function.
    Roy S; Charboneau RG; Barke RA; Loh HH
    Adv Exp Med Biol; 2001; 493():117-26. PubMed ID: 11727757
    [No Abstract]   [Full Text] [Related]  

  • 4. MU-opioid receptor-knockout mice: role of mu-opioid receptor in morphine mediated immune functions.
    Roy S; Barke RA; Loh HH
    Brain Res Mol Brain Res; 1998 Oct; 61(1-2):190-4. PubMed ID: 9795212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mu-opioid receptor mediates chronic restraint stress-induced lymphocyte apoptosis.
    Wang J; Charboneau R; Barke RA; Loh HH; Roy S
    J Immunol; 2002 Oct; 169(7):3630-6. PubMed ID: 12244154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of central opioid receptor subtypes in morphine-induced alterations in peripheral lymphocyte activity.
    Mellon RD; Bayer BM
    Brain Res; 1998 Apr; 789(1):56-67. PubMed ID: 9602057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dextro- and levo-morphine attenuate opioid delta and kappa receptor agonist produced analgesia in mu-opioid receptor knockout mice.
    Wu HE; Sun HS; Terashivili M; Schwasinger E; Sora I; Hall FS; Uhl GR; Tseng LF
    Eur J Pharmacol; 2006 Feb; 531(1-3):103-7. PubMed ID: 16445907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kappa opiate agonists modulate the hypothalamic-pituitary-adrenocortical axis in the rat.
    Iyengar S; Kim HS; Wood PL
    J Pharmacol Exp Ther; 1986 Aug; 238(2):429-36. PubMed ID: 3016237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of kappa-opioid receptor mechanisms in the calcitonin-induced potentiation of opioid effects at the hypothalamus-pituitary-adrenocortical axis.
    Milanés MV; Vargas ML; Martín MI
    Eur J Pharmacol; 1994 Dec; 271(1):103-9. PubMed ID: 7698193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of functional mu-opioid receptors during T cell development.
    McCarthy L; Szabo I; Nitsche JF; Pintar JE; Rogers TJ
    J Neuroimmunol; 2001 Mar; 114(1-2):173-80. PubMed ID: 11240029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the mu-opioid receptor.
    Wang J; Charboneau R; Balasubramanian S; Barke RA; Loh HH; Roy S
    J Leukoc Biol; 2002 May; 71(5):782-90. PubMed ID: 11994502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides.
    Iyengar S; Kim HS; Wood PL
    Brain Res; 1987 Dec; 435(1-2):220-6. PubMed ID: 2892574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of hypothalamic-pituitary-adrenocortical system in transgenic mice expressing type II glucocorticoid receptor antisense ribonucleic acid permanently impairs T cell function: effects on T cell trafficking and T cell responsiveness during postnatal development.
    Morale MC; Batticane N; Gallo F; Barden N; Marchetti B
    Endocrinology; 1995 Sep; 136(9):3949-60. PubMed ID: 7649104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine directs T cells toward T(H2) differentiation.
    Roy S; Balasubramanian S; Sumandeep S; Charboneau R; Wang J; Melnyk D; Beilman GJ; Vatassery R; Barke RA
    Surgery; 2001 Aug; 130(2):304-9. PubMed ID: 11490364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic naloxone treatment induces supersensitivity to a mu but not to a kappa agonist at the hypothalamus-pituitary-adrenocortical axis level.
    Alcaraz C; Vargas ML; Fuente T; Milanés MV
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1602-6. PubMed ID: 8396640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of mu- and kappa-opiate receptor control of the hypothalamo-pituitary-adrenal axis in rats.
    Adamson WT; Windh RT; Blackford S; Kuhn CM
    Endocrinology; 1991 Aug; 129(2):959-64. PubMed ID: 1649751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of morphine, nicotine and epibatidine on lymphocyte activity and hypothalamic-pituitary-adrenal axis responses.
    Mellon RD; Bayer BM
    J Pharmacol Exp Ther; 1999 Feb; 288(2):635-42. PubMed ID: 9918569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo-pituitary adrenal axis in the rat.
    Bakker JM; Schmidt ED; Kroes H; Kavelaars A; Heijnen CJ; Tilders FJ; van Rees EP
    J Neuroimmunol; 1995 Dec; 63(2):183-91. PubMed ID: 8550816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endomorphins and activation of the hypothalamo-pituitary-adrenal axis.
    Coventry TL; Jessop DS; Finn DP; Crabb MD; Kinoshita H; Harbuz MS
    J Endocrinol; 2001 Apr; 169(1):185-93. PubMed ID: 11250660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenerational blunting of morphine-induced corticosterone secretion is associated with dysregulated gene expression in male offspring.
    Vassoler FM; Toorie AM; Byrnes EM
    Brain Res; 2018 Jan; 1679():19-25. PubMed ID: 29129606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.