These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11438190)
1. Colorimetric determination of active alpha-glucoside transport in Saccharomyces cerevisiae. Hollatz C; Stambuk BU J Microbiol Methods; 2001 Sep; 46(3):253-9. PubMed ID: 11438190 [TBL] [Abstract][Full Text] [Related]
2. Active alpha-glucoside transport in Saccharomyces cerevisiae. Stambuk BU; da Silva MA; Panek AD; de Araujo PS FEMS Microbiol Lett; 1999 Jan; 170(1):105-10. PubMed ID: 9919658 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae. Stambuk BU; de Araujo PS FEMS Yeast Res; 2001 Apr; 1(1):73-8. PubMed ID: 12702465 [TBL] [Abstract][Full Text] [Related]
4. Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Han EK; Cotty F; Sottas C; Jiang H; Michels CA Mol Microbiol; 1995 Sep; 17(6):1093-107. PubMed ID: 8594329 [TBL] [Abstract][Full Text] [Related]
5. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae. Smit A; Moses SG; Pretorius IS; Cordero Otero RR J Appl Microbiol; 2008 Apr; 104(4):1103-11. PubMed ID: 18179544 [TBL] [Abstract][Full Text] [Related]
6. Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae. Trichez D; Knychala MM; Figueiredo CM; Alves SL; da Silva MA; Miletti LC; de Araujo PS; Stambuk BU J Appl Microbiol; 2019 Feb; 126(2):580-594. PubMed ID: 30466168 [TBL] [Abstract][Full Text] [Related]
7. Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease. Alves SL; Thevelein JM; Stambuk BU Lett Appl Microbiol; 2018 Oct; 67(4):377-383. PubMed ID: 29992585 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Alves SL; Herberts RA; Hollatz C; Trichez D; Miletti LC; de Araujo PS; Stambuk BU Appl Environ Microbiol; 2008 Mar; 74(5):1494-501. PubMed ID: 18203856 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Day RE; Rogers PJ; Dawes IW; Higgins VJ Appl Environ Microbiol; 2002 Nov; 68(11):5326-35. PubMed ID: 12406721 [TBL] [Abstract][Full Text] [Related]
10. AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. Plourde-Owobi L; Durner S; Parrou JL; Wieczorke R; Goma G; François J J Bacteriol; 1999 Jun; 181(12):3830-2. PubMed ID: 10368160 [TBL] [Abstract][Full Text] [Related]
11. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Vidgren V; Huuskonen A; Virtanen H; Ruohonen L; Londesborough J Appl Environ Microbiol; 2009 Apr; 75(8):2333-45. PubMed ID: 19181838 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Day RE; Higgins VJ; Rogers PJ; Dawes IW Yeast; 2002 Sep; 19(12):1015-27. PubMed ID: 12210897 [TBL] [Abstract][Full Text] [Related]
14. Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Plourde-Owobi L; Durner S; Goma G; François J Int J Food Microbiol; 2000 Apr; 55(1-3):33-40. PubMed ID: 10791714 [TBL] [Abstract][Full Text] [Related]
15. The Kluyver effect for trehalose in Saccharomyces cerevisiae. Malluta EF; Decker P; Stambuk BU J Basic Microbiol; 2000; 40(3):199-205. PubMed ID: 10957961 [TBL] [Abstract][Full Text] [Related]
16. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Medintz I; Wang X; Hradek T; Michels CA Biochemistry; 2000 Apr; 39(15):4518-26. PubMed ID: 10758001 [TBL] [Abstract][Full Text] [Related]
17. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family. Salema-Oom M; Valadão Pinto V; Gonçalves P; Spencer-Martins I Appl Environ Microbiol; 2005 Sep; 71(9):5044-9. PubMed ID: 16151085 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose. Hatanaka H; Mitsunaga H; Fukusaki E J Biosci Bioeng; 2018 Jan; 125(1):52-58. PubMed ID: 28919251 [TBL] [Abstract][Full Text] [Related]
19. Trehalose transport in yeast cells. Crowe JH; Panek AD; Crowe LM; Panek AC; De Araujo PS Biochem Int; 1991 Jul; 24(4):721-30. PubMed ID: 1799371 [TBL] [Abstract][Full Text] [Related]
20. Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70. Cousseau FE; Alves SL; Trichez D; Stambuk BU Lett Appl Microbiol; 2013 Jan; 56(1):21-9. PubMed ID: 23061413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]