These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 11438306)
1. Factors involved in the time course of response to acetylcholine in mesenteric arteries from spontaneously hypertensive rats. Sunano S; Nakahira T; Kawata K; Sekiguchi F Eur J Pharmacol; 2001 Jun; 423(1):47-55. PubMed ID: 11438306 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983 [TBL] [Abstract][Full Text] [Related]
3. Responses to endothelium-derived factors and their interaction in mesenteric arteries from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats. Sekiguchi F; Nakahira T; Kawata K; Sunano S Clin Exp Pharmacol Physiol; 2002 Dec; 29(12):1066-74. PubMed ID: 12390294 [TBL] [Abstract][Full Text] [Related]
4. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Deng LY; Li JS; Schiffrin EL Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395 [TBL] [Abstract][Full Text] [Related]
5. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats. Salomone S; Morel N; Godfraind T Br J Pharmacol; 1997 Jul; 121(6):1051-8. PubMed ID: 9249238 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the effects of supplementation with whey mineral and potassium on arterial tone in experimental hypertension. Wu X; Tolvanen JP; Hutri-Kähönen N; Kähönen M; Mäkynen H; Korpela R; Ruskoaho H; Karjala K; Pörsti I Cardiovasc Res; 1998 Nov; 40(2):364-74. PubMed ID: 9893730 [TBL] [Abstract][Full Text] [Related]
8. Relevance of endothelium-derived hyperpolarizing factor in the effects of hypertension on rat coronary relaxations. Vázquez-Pérez S; Navarro-Cid J; de las Heras N; Cediel E; Sanz-Rosa D; Ruilope LM; Cachofeiro V; Lahera V J Hypertens; 2001 Mar; 19(3 Pt 2):539-45. PubMed ID: 11327627 [TBL] [Abstract][Full Text] [Related]
9. Hypertension and impairment of endothelium-dependent relaxation of arteries from spontaneously hypertensive and L-NAME-treated Wistar rats. Sekiguchi F; Miyake Y; Hirakawa A; Nakahira T; Yamaoka M; Shimamura K; Yamamoto K; Sunano S J Smooth Muscle Res; 2001 Apr; 37(2):67-79. PubMed ID: 11592285 [TBL] [Abstract][Full Text] [Related]
10. Unaltered endothelium-dependent modulation of contraction in the pulmonary artery of hypertensive rats. Matsuda K; Sekiguchi F; Yamamoto K; Shimamura K; Sunano S Eur J Pharmacol; 2000 Mar; 392(1-2):61-70. PubMed ID: 10748273 [TBL] [Abstract][Full Text] [Related]
11. Influence of mode of contraction on the mechanism of acetylcholine-mediated relaxation of coronary arteries from normotensive and spontaneously hypertensive rats. Bund SJ Clin Sci (Lond); 1998 Mar; 94(3):231-8. PubMed ID: 9616256 [TBL] [Abstract][Full Text] [Related]
12. Insulin inhibits acetylcholine responses in rat isolated mesenteric arteries via a non-nitric oxide nonprostanoid pathway. Kimura M; Jefferis AM; Watanabe H; Chin-Dusting J Hypertension; 2002 Jan; 39(1):35-40. PubMed ID: 11799075 [TBL] [Abstract][Full Text] [Related]
13. Cilazapril reverses endothelium-dependent vasodilator response to acetylcholine in mesenteric artery from spontaneously hypertensive rats. Young RH; Ding YA; Lee YM; Yen MH Am J Hypertens; 1995 Sep; 8(9):928-33. PubMed ID: 8541009 [TBL] [Abstract][Full Text] [Related]
14. Loss of acetylcholine-induced relaxation by M3-receptor activation in mesenteric arteries of spontaneously hypertensive rats. Wu CC; Chen SJ; Yen MH J Cardiovasc Pharmacol; 1997 Aug; 30(2):245-52. PubMed ID: 9269954 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis. Barriere E; Tazi KA; Rona JP; Pessione F; Heller J; Lebrec D; Moreau R Hepatology; 2000 Nov; 32(5):935-41. PubMed ID: 11050042 [TBL] [Abstract][Full Text] [Related]
17. Alpha-lactorphin and beta-lactorphin improve arterial function in spontaneously hypertensive rats. Sipola M; Finckenberg P; Vapaatalo H; Pihlanto-Leppälä A; Korhonen H; Korpela R; Nurminen ML Life Sci; 2002 Aug; 71(11):1245-53. PubMed ID: 12106590 [TBL] [Abstract][Full Text] [Related]
18. KCa 3.1 channels maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats after chronic inhibition of NOS. Simonet S; Isabelle M; Bousquenaud M; Clavreul N; Félétou M; Vayssettes-Courchay C; Verbeuren TJ Br J Pharmacol; 2012 Oct; 167(4):854-67. PubMed ID: 22646737 [TBL] [Abstract][Full Text] [Related]
19. Effect of chronic treatment with perindopril on endothelium-dependent relaxation of aorta and carotid artery in SHRSP. Shimamura K; Sekiguchi F; Matsuda K; Ozaki M; Noguchi K; Yamamoto K; Shibano T; Tanaka M; Sunano S J Smooth Muscle Res; 2000 Feb; 36(1):33-46. PubMed ID: 10830476 [TBL] [Abstract][Full Text] [Related]
20. Effect of nitro-L-arginine on electrical and mechanical responses to acetylcholine in the superior mesenteric artery from stroke-prone hypertensive rat. Ghisdal P; Godfraind T; Morel N Br J Pharmacol; 1999 Dec; 128(7):1513-23. PubMed ID: 10602331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]