These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11438591)

  • 21. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina.
    Frech MJ; Backus KH
    Vis Neurosci; 2004; 21(4):645-52. PubMed ID: 15579227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina.
    Frech MJ; Pérez-León J; Wässle H; Backus KH
    J Neurophysiol; 2001 Oct; 86(4):1632-43. PubMed ID: 11600626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A glycine receptor antagonist, strychnine, blocked NMDA receptor activation in the neonatal mouse neocortex.
    Miyakawa N; Uchino S; Yamashita T; Okada H; Nakamura T; Kaminogawa S; Miyamoto Y; Hisatsune T
    Neuroreport; 2002 Sep; 13(13):1667-73. PubMed ID: 12352624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific.
    Schubert T; Kerschensteiner D; Eggers ED; Misgeld T; Kerschensteiner M; Lichtman JW; Lukasiewicz PD; Wong RO
    J Neurophysiol; 2008 Jul; 100(1):304-16. PubMed ID: 18436633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABA-activated chloride currents of postnatal mouse retinal ganglion cells are blocked by acetylcholine and acetylcarnitine: how specific are ion channels in immature neurons?
    Bähring R; Standhardt H; Martelli EA; Grantyn R
    Eur J Neurosci; 1994 Jul; 6(7):1089-99. PubMed ID: 7952289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental modulation of retinal wave dynamics: shedding light on the GABA saga.
    Sernagor E; Young C; Eglen SJ
    J Neurosci; 2003 Aug; 23(20):7621-9. PubMed ID: 12930801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation.
    Ichinose T; Lukasiewicz PD
    J Neurosci; 2002 Apr; 22(8):3285-92. PubMed ID: 11943830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity.
    Wong WT; Myhr KL; Miller ED; Wong RO
    J Neurosci; 2000 Jan; 20(1):351-60. PubMed ID: 10627612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogram b-wave amplitude from the isolated superfused vertebrate retina.
    Siapich SA; Banat M; Albanna W; Hescheler J; Lüke M; Schneider T
    Acta Ophthalmol; 2009 Nov; 87(8):854-65. PubMed ID: 20002018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons.
    Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE
    J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina.
    Flores-Herr N; Protti DA; Wässle H
    J Neurosci; 2001 Jul; 21(13):4852-63. PubMed ID: 11425912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium action potentials are not required for light-evoked release of GABA or glycine from retinal amacrine cells.
    Bieda MC; Copenhagen DR
    J Neurophysiol; 1999 Jun; 81(6):3092-5. PubMed ID: 10368424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina.
    Cunningham JR; Neal MJ
    J Physiol; 1983 Mar; 336():563-77. PubMed ID: 6135799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycinergic synaptic currents in the deep cerebellar nuclei.
    Pedroarena CM; Kamphausen S
    Neuropharmacology; 2008 Apr; 54(5):784-95. PubMed ID: 18234240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of single-channel properties to the time course and amplitude variance of quantal glycine currents recorded in rat motoneurons.
    Singer JH; Berger AJ
    J Neurophysiol; 1999 Apr; 81(4):1608-16. PubMed ID: 10200197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice.
    Weiss J; O'Sullivan GA; Heinze L; Chen HX; Betz H; Wässle H
    Mol Cell Neurosci; 2008 Jan; 37(1):40-55. PubMed ID: 17920294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells.
    Tian N; Hwang TN; Copenhagen DR
    J Neurophysiol; 1998 Sep; 80(3):1327-40. PubMed ID: 9744942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons.
    Wang J; Wang X; Irnaten M; Venkatesan P; Evans C; Baxi S; Mendelowitz D
    J Neurophysiol; 2003 May; 89(5):2473-81. PubMed ID: 12611951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.